StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Apache Pinot vs StreamSets

Apache Pinot vs StreamSets

OverviewComparisonAlternatives

Overview

StreamSets
StreamSets
Stacks53
Followers133
Votes0
Apache Pinot
Apache Pinot
Stacks5
Followers3
Votes0
GitHub Stars5.9K
Forks1.4K

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

StreamSets
StreamSets
Apache Pinot
Apache Pinot

An end-to-end data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps.

Apache Pinot is a fast, scalable real-time analytics database. It is a column-oriented distributed Online Analytics Processing (OLAP) database designed for high concurrency and low latency. It can scan petabyte-scale data and produce results even as fast as single-digit milliseconds.

Only StreamSets provides a single design experience for all design patterns (batch, streaming, CDC, ETL, ELT, and ML pipelines) for 10x greater developer productivity; smart data pipelines that are resilient to change for 80% less breakages; and a single pane of glass for managing and monitoring all pipelines across hybrid and cloud architectures to eliminate blind spots and control gaps.
Real-time ingestion (Kafka, Kinesis, Pulsar); Real-time upserts; Batch ingestion (Flink, Hadoop, Spark); SQL ingestion (Snowflake, BigQuery); Ingestion time pre-processing (transforms, flattening, rollups); Flexible indexing types (star-tree, Bloom filter, forward, inverted, geospatial, JSON, range, text, timestamp); Automatic data replication and partitioning; Encryption (on disk; transport); Easy table management (backfills, dynamic re-indexing, minions for dynamic data layout changes); Schema evolution; Nested columns
Statistics
GitHub Stars
-
GitHub Stars
5.9K
GitHub Forks
-
GitHub Forks
1.4K
Stacks
53
Stacks
5
Followers
133
Followers
3
Votes
0
Votes
0
Pros & Cons
Cons
  • 2
    No user community
  • 1
    Crashes
No community feedback yet
Integrations
HBase
HBase
Databricks
Databricks
Amazon Redshift
Amazon Redshift
MySQL
MySQL
gRPC
gRPC
Google BigQuery
Google BigQuery
Amazon Kinesis
Amazon Kinesis
Cassandra
Cassandra
Hadoop
Hadoop
Redis
Redis
Google BigQuery
Google BigQuery
Hadoop
Hadoop
Kafka
Kafka
Apache Spark
Apache Spark
Amazon Kinesis
Amazon Kinesis
Snowflake
Snowflake
Apache Flink
Apache Flink
Apache Pulsar
Apache Pulsar

What are some alternatives to StreamSets, Apache Pinot?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Presto

Presto

Distributed SQL Query Engine for Big Data

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase