Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Apache Flink

531
877
+ 1
38
Redis

60K
46K
+ 1
3.9K
Add tool

Apache Flink vs Redis: What are the differences?

Key Differences between Apache Flink and Redis

Apache Flink and Redis are both popular technologies used in the field of data processing and storage. While they serve different purposes, there are several key differences between the two:

  1. Data Processing vs Data Storage: Apache Flink is a distributed processing framework that focuses on data processing and analysis in real-time or batch mode. It provides powerful stream processing capabilities and supports fault-tolerant, scalable data processing pipelines. On the other hand, Redis is an in-memory data structure store that primarily focuses on data storage and caching. It provides fast read and write operations by keeping data in-memory.

  2. Data Model: Apache Flink operates on a flexible and powerful data model that supports both structured and unstructured data. It provides various APIs and libraries for processing and analyzing data at large scale. Redis, on the other hand, uses a simple key-value data model where data is stored and accessed using keys and values. It also supports additional data structures such as lists, sets, and hashes.

  3. Processing Paradigm: Apache Flink supports both batch and stream processing paradigms, allowing users to process both historical and real-time data. It provides built-in support for event time and out-of-order processing. Redis, on the other hand, is primarily focused on real-time data processing and storage. While it has some support for pub/sub messaging, it is not a dedicated stream processing engine like Apache Flink.

  4. Scalability and Fault Tolerance: Apache Flink is designed to scale horizontally and handle large volumes of data by distributing the processing across multiple machines. It provides fault-tolerance mechanisms like checkpointing and exactly-once semantics for data processing. Redis, on the other hand, can be deployed in a cluster mode to achieve high scalability and availability. It supports replication and sharding to distribute data across multiple nodes.

  5. Persistence: Apache Flink is primarily an in-memory processing engine, but it also provides support for various persistent storages like Apache Hadoop Distributed File System (HDFS) and cloud-based object stores. It allows users to store and retrieve data for both batch and stream processing. Redis, on the other hand, is an in-memory data store that can optionally persist data to disk. It provides mechanisms like snapshots and persistence modes to ensure data durability.

  6. Use cases: Apache Flink is commonly used for real-time analytics, stream processing, and complex event processing. It finds applications in areas like fraud detection, machine learning, and real-time monitoring. On the other hand, Redis is often used for caching, session storage, message queues, and building real-time applications that require high-speed data access.

In summary, Apache Flink and Redis differ in their focus and capabilities. Apache Flink is a scalable data processing framework for both batch and stream processing, while Redis is an in-memory data storage and caching solution.

Advice on Apache Flink and Redis
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 564K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
on
ElasticsearchElasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 399.4K views
Recommends
on
Apache SparkApache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Apache Flink
Pros of Redis
  • 16
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 4
    Open Source
  • 2
    Low latency
  • 887
    Performance
  • 542
    Super fast
  • 514
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
  • 194
    Open source
  • 182
    Easy to deploy
  • 165
    Stable
  • 156
    Free
  • 121
    Fast
  • 42
    High-Performance
  • 40
    High Availability
  • 35
    Data Structures
  • 32
    Very Scalable
  • 24
    Replication
  • 23
    Pub/Sub
  • 22
    Great community
  • 19
    "NoSQL" key-value data store
  • 16
    Hashes
  • 13
    Sets
  • 11
    Sorted Sets
  • 10
    Lists
  • 10
    NoSQL
  • 9
    Async replication
  • 9
    BSD licensed
  • 8
    Integrates super easy with Sidekiq for Rails background
  • 8
    Bitmaps
  • 7
    Open Source
  • 7
    Keys with a limited time-to-live
  • 6
    Lua scripting
  • 6
    Strings
  • 5
    Awesomeness for Free
  • 5
    Hyperloglogs
  • 4
    Runs server side LUA
  • 4
    Transactions
  • 4
    Networked
  • 4
    Outstanding performance
  • 4
    Feature Rich
  • 4
    Written in ANSI C
  • 4
    LRU eviction of keys
  • 3
    Data structure server
  • 3
    Performance & ease of use
  • 2
    Temporarily kept on disk
  • 2
    Dont save data if no subscribers are found
  • 2
    Automatic failover
  • 2
    Easy to use
  • 2
    Scalable
  • 2
    Channels concept
  • 2
    Object [key/value] size each 500 MB
  • 2
    Existing Laravel Integration
  • 2
    Simple

Sign up to add or upvote prosMake informed product decisions

Cons of Apache Flink
Cons of Redis
    Be the first to leave a con
    • 15
      Cannot query objects directly
    • 3
      No secondary indexes for non-numeric data types
    • 1
      No WAL

    Sign up to add or upvote consMake informed product decisions

    1.9K
    1
    855
    246
    25.5K

    What is Apache Flink?

    Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

    What is Redis?

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Apache Flink?
    What companies use Redis?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Apache Flink?
    What tools integrate with Redis?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Mar 24 2021 at 12:57PM

    Pinterest

    GitJenkinsKafka+7
    3
    2250
    Nov 20 2019 at 3:38AM

    OneSignal

    PostgreSQLRedisRuby+8
    9
    4818
    What are some alternatives to Apache Flink and Redis?
    Apache Spark
    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
    Apache Storm
    Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.
    Akutan
    A distributed knowledge graph store. Knowledge graphs are suitable for modeling data that is highly interconnected by many types of relationships, like encyclopedic information about the world.
    Apache Flume
    It is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
    Kafka
    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
    See all alternatives