StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. In-Memory Databases
  4. In Memory Databases
  5. Kafka vs Redis

Kafka vs Redis

OverviewDecisionsComparisonAlternatives

Overview

Redis
Redis
Stacks61.9K
Followers46.5K
Votes3.9K
GitHub Stars42
Forks6
Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K

Kafka vs Redis: What are the differences?

Introduction

Here, we will discuss the key differences between Kafka and Redis.

  1. Scalability and Performance: Kafka is designed for high scalability and high-performance data streaming. It can handle large volumes of data and high traffic loads efficiently. On the other hand, Redis is an in-memory data store that is optimized for low-latency and high-throughput operations. It excels in scenarios where fast data retrieval is crucial.

  2. Data Persistence: Kafka is primarily a distributed streaming platform that provides fault-tolerant storage and replicates data across a cluster. It is optimized for write-intensive workloads and retains data for a specified period or size. In contrast, Redis is an in-memory database that persists data on disk periodically or on-demand. It provides fast read and write access to data that fits entirely in memory.

  3. Data Structure and Operations: Kafka uses a publish-subscribe messaging model, where producers write messages to topics, and consumers subscribe to those topics to receive messages. It provides fault-tolerant and durable message storage. Redis, on the other hand, offers a wide range of data structures like strings, lists, sets, sorted sets, hashes, etc., and supports various operations on these data structures. It can be used as a database, cache, or message broker.

  4. Message Retention and Durability: Kafka guarantees durability and fault-tolerance by replicating messages across different brokers in a cluster. It allows for configurable retention of messages for a specified period or size. Redis, being an in-memory database, can achieve durability by periodically persisting data on disk or by leveraging persistence options like Append-Only File (AOF) or Snapshotting. However, it does not offer replication across multiple nodes by default.

  5. Data Processing: Kafka provides built-in stream processing capabilities that enable real-time data processing and analytics. It allows for the seamless integration of external processing frameworks like Apache Samza, Apache Flink, or Apache Spark for complex data transformations. In Redis, data processing capabilities are limited, and it mainly focuses on data storage and retrieval operations.

  6. Consistency and Ordering: Kafka guarantees the ordering of messages within each partition of a topic, providing strong consistency. It stores all messages in the order they were received, ensuring sequential processing. Redis, on the other hand, does not enforce any specific ordering of data stored in different keys, making it more suitable for scenarios where eventual consistency is acceptable.

In summary, Kafka is a high-performance distributed streaming platform optimized for scalability, fault tolerance, and real-time data processing, while Redis is an in-memory database providing fast data retrieval and a wide range of data structures for efficient operations.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Redis, Kafka

viradiya
viradiya

Apr 12, 2020

Needs adviceonAngularJSAngularJSASP.NET CoreASP.NET CoreMSSQLMSSQL

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

933k views933k
Comments
Kirill
Kirill

GO/C developer at Duckling Sales

Feb 16, 2021

Decided

Maybe not an obvious comparison with Kafka, since Kafka is pretty different from rabbitmq. But for small service, Rabbit as a pubsub platform is super easy to use and pretty powerful. Kafka as an alternative was the original choice, but its really a kind of overkill for a small-medium service. Especially if you are not planning to use k8s, since pure docker deployment can be a pain because of networking setup. Google PubSub was another alternative, its actually pretty cheap, but I never tested it since Rabbit was matching really good for mailing/notification services.

266k views266k
Comments
Ishfaq
Ishfaq

Feb 28, 2020

Needs advice

Our backend application is sending some external messages to a third party application at the end of each backend (CRUD) API call (from UI) and these external messages take too much extra time (message building, processing, then sent to the third party and log success/failure), UI application has no concern to these extra third party messages.

So currently we are sending these third party messages by creating a new child thread at end of each REST API call so UI application doesn't wait for these extra third party API calls.

I want to integrate Apache Kafka for these extra third party API calls, so I can also retry on failover third party API calls in a queue(currently third party messages are sending from multiple threads at the same time which uses too much processing and resources) and logging, etc.

Question 1: Is this a use case of a message broker?

Question 2: If it is then Kafka vs RabitMQ which is the better?

804k views804k
Comments

Detailed Comparison

Redis
Redis
Kafka
Kafka

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

-
Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
Statistics
GitHub Stars
42
GitHub Stars
31.2K
GitHub Forks
6
GitHub Forks
14.8K
Stacks
61.9K
Stacks
24.2K
Followers
46.5K
Followers
22.3K
Votes
3.9K
Votes
607
Pros & Cons
Pros
  • 888
    Performance
  • 542
    Super fast
  • 514
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
Cons
  • 15
    Cannot query objects directly
  • 3
    No secondary indexes for non-numeric data types
  • 1
    No WAL
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

What are some alternatives to Redis, Kafka?

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Hazelcast

Hazelcast

With its various distributed data structures, distributed caching capabilities, elastic nature, memcache support, integration with Spring and Hibernate and more importantly with so many happy users, Hazelcast is feature-rich, enterprise-ready and developer-friendly in-memory data grid solution.

Aerospike

Aerospike

Aerospike is an open-source, modern database built from the ground up to push the limits of flash storage, processors and networks. It was designed to operate with predictable low latency at high throughput with uncompromising reliability – both high availability and ACID guarantees.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase