StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Kafka vs NSQ vs RabbitMQ

Kafka vs NSQ vs RabbitMQ

OverviewDecisionsComparisonAlternatives

Overview

RabbitMQ
RabbitMQ
Stacks21.8K
Followers18.9K
Votes558
GitHub Stars13.2K
Forks4.0K
Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K
NSQ
NSQ
Stacks141
Followers356
Votes148

Kafka vs NSQ vs RabbitMQ: What are the differences?

Introduction

Kafka, NSQ, and RabbitMQ are popular messaging systems used for building distributed systems. While all three provide reliable message delivery, they differ in various aspects. Here are the key differences between Kafka, NSQ, and RabbitMQ.

  1. Message Ordering: Kafka maintains the order of messages within a partition, ensuring that messages are processed in the order they were produced. NSQ does not maintain strict ordering and processes messages as they arrive. RabbitMQ provides ordering within a single channel but not across multiple channels, making it less suitable for applications that require strict ordering.

  2. Message Persistence: Kafka persists messages to disk, allowing for durability and fault tolerance, even if the consumer is not currently consuming messages. NSQ also provides message persistence but with lower guarantees compared to Kafka. RabbitMQ offers message persistence through the use of durable queues, ensuring that messages are not lost even in the event of a server crash.

  3. Scalability: Kafka is designed for high scalability and can handle a large number of producers and consumers. It allows parallel processing of messages due to its partition-based architecture. NSQ and RabbitMQ are also scalable but have practical limitations compared to Kafka. NSQ adopts a decentralized design, making it easier to scale horizontally, while RabbitMQ requires the use of clustering for horizontal scalability.

  4. Message Acknowledgement: Kafka relies on a commit-based approach for acknowledging message consumption. Consumers explicitly commit offsets to Kafka, allowing for at-least-once delivery semantics. NSQ follows a similar approach, where consumers acknowledge successful message processing. RabbitMQ uses an acknowledgment mechanism where consumers send an acknowledgment back to the server after processing a message.

  5. Protocol: Kafka uses a custom binary protocol and provides a native Java client library. It has client APIs available in multiple languages. NSQ uses a simple text-based protocol, making it straightforward to interact with using existing tools and libraries. RabbitMQ implements the Advanced Message Queuing Protocol (AMQP), which is a standard messaging protocol, allowing for interoperability with different systems and languages.

  6. Robustness and Fault Tolerance: Kafka is designed to be highly fault-tolerant and provides built-in replication and leader election mechanisms for data redundancy. NSQ also offers some level of fault tolerance but with fewer built-in features compared to Kafka. RabbitMQ relies on clustering and message replication to achieve fault tolerance.

In summary, Kafka excels in strict message ordering and scalability, with strong fault tolerance through replication. NSQ offers simplicity, decentralization, and fault tolerance. RabbitMQ supports various messaging patterns, message durability through queues, and interoperability with different systems through the AMQP protocol.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on RabbitMQ, Kafka, NSQ

Pulkit
Pulkit

Software Engineer

Oct 30, 2020

Needs adviceonDjangoDjangoAmazon SQSAmazon SQSRabbitMQRabbitMQ

Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

474k views474k
Comments
Meili
Meili

Software engineer at Digital Science

Sep 24, 2020

Needs adviceonZeroMQZeroMQRabbitMQRabbitMQAmazon SQSAmazon SQS

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to:

  • Not loose messages in services outages
  • Safely restart service without losing messages (@{ZeroMQ}|tool:1064| seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

500k views500k
Comments
André
André

Technology Manager at GS1 Portugal - Codipor

Jul 30, 2020

Needs adviceon.NET Core.NET Core

Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?

We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).

Thank you very much in advance :)

461k views461k
Comments

Detailed Comparison

RabbitMQ
RabbitMQ
Kafka
Kafka
NSQ
NSQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Robust messaging for applications;Easy to use;Runs on all major operating systems;Supports a huge number of developer platforms;Open source and commercially supported
Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
support distributed topologies with no SPOF;horizontally scalable (no brokers, seamlessly add more nodes to the cluster);low-latency push based message delivery (performance);combination load-balanced and multicast style message routing;excel at both streaming (high-throughput) and job oriented (low-throughput) workloads;primarily in-memory (beyond a high-water mark messages are transparently kept on disk);runtime discovery service for consumers to find producers (nsqlookupd);transport layer security (TLS);data format agnostic;few dependencies (easy to deploy) and a sane, bounded, default configuration;simple TCP protocol supporting client libraries in any language;HTTP interface for stats, admin actions, and producers (no client library needed to publish);integrates with statsd for realtime instrumentation;robust cluster administration interface (nsqadmin)
Statistics
GitHub Stars
13.2K
GitHub Stars
31.2K
GitHub Stars
-
GitHub Forks
4.0K
GitHub Forks
14.8K
GitHub Forks
-
Stacks
21.8K
Stacks
24.2K
Stacks
141
Followers
18.9K
Followers
22.3K
Followers
356
Votes
558
Votes
607
Votes
148
Pros & Cons
Pros
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
Cons
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging
Pros
  • 29
    It's in golang
  • 20
    Lightweight
  • 20
    Distributed
  • 18
    Easy setup
  • 17
    High throughput
Cons
  • 1
    Long term persistence
  • 1
    HA
  • 1
    Get NSQ behavior out of Kafka but not inverse

What are some alternatives to RabbitMQ, Kafka, NSQ?

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Memphis

Memphis

Highly scalable and effortless data streaming platform. Made to enable developers and data teams to collaborate and build real-time and streaming apps fast.

IronMQ

IronMQ

An easy-to-use highly available message queuing service. Built for distributed cloud applications with critical messaging needs. Provides on-demand message queuing with advanced features and cloud-optimized performance.

Apache Pulsar

Apache Pulsar

Apache Pulsar is a distributed messaging solution developed and released to open source at Yahoo. Pulsar supports both pub-sub messaging and queuing in a platform designed for performance, scalability, and ease of development and operation.

Confluent

Confluent

It is a data streaming platform based on Apache Kafka: a full-scale streaming platform, capable of not only publish-and-subscribe, but also the storage and processing of data within the stream

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase