StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Container Registry
  4. Container Tools
  5. Kubernetes vs LXC

Kubernetes vs LXC

OverviewDecisionsComparisonAlternatives

Overview

Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685
LXC
LXC
Stacks116
Followers223
Votes19
GitHub Stars5.0K
Forks1.2K

Kubernetes vs LXC: What are the differences?

Introduction

Kubernetes and LXC are both containerization technologies used in the field of cloud computing. While they both serve the purpose of deploying and managing containers, there are several key differences between them.

  1. Container Orchestration: Kubernetes is a container orchestration platform that provides a robust set of tools and features to manage containerized applications. It automates tasks such as deployment, scaling, and load balancing, enabling easier management of containers at scale. On the other hand, LXC is a lightweight virtualization technology that provides operating system-level virtualization. It allows the creation of multiple isolated Linux containers on a single host but lacks the extensive orchestration capabilities of Kubernetes.

  2. Scope of Management: Kubernetes operates at the cluster level, enabling the management of a large number of containers across multiple hosts. It provides mechanisms for service discovery, load balancing, and fault tolerance, allowing applications to scale horizontally. LXC, on the other hand, focuses on managing individual containers within a host. It does not have built-in features for load balancing or horizontal scaling.

  3. Portability: Kubernetes offers a high level of portability, allowing applications to be deployed across different cloud providers or on-premises environments. It provides a unified API and a set of standard deployment manifests (YAML files) that can be used to define and deploy applications. In contrast, LXC is more tied to the underlying host system as it relies on the specific kernel of the host. Moving LXC containers between hosts with different kernels may require additional configuration or compatibility checks.

  4. Resource Sharing: Kubernetes enables efficient resource sharing among containers through its resource management and allocation mechanisms. It provides features like resource quotas, which allow administrators to limit the amount of CPU, memory, and other resources consumed by containers. LXC, on the other hand, does not have built-in resource management capabilities and relies on the host's kernel for resource allocation.

  5. Networking: Kubernetes provides a sophisticated networking model that allows containers to communicate with each other and external services. It supports features like service discovery, load balancing, and network policies for fine-grained control. LXC, being a lower-level technology, primarily relies on the host's networking stack for container networking. While it is possible to configure networking for LXC containers, it lacks the advanced networking features provided by Kubernetes.

  6. Community and Ecosystem: Kubernetes has a vibrant open-source community and a rich ecosystem of third-party tools and integrations. It is widely adopted and supported by major cloud providers. LXC, while also open-source, may not have as extensive a community and ecosystem as Kubernetes. This can result in fewer resources, lesser adoption, and limited support for LXC compared to Kubernetes.

In summary, Kubernetes is a powerful container orchestration platform with advanced features for managing containers at scale, offering greater portability, extensive networking capabilities, and a thriving community. LXC, on the other hand, provides lightweight containerization with a focus on individual container management within a host.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kubernetes, LXC

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Anis
Anis

Founder at Odix

Nov 7, 2020

Review

I recommend this : -Spring reactive for back end : the fact it's reactive (async) it consumes half of the resources that a sync platform needs (so less CPU -> less money). -Angular : Web Front end ; it's gives you the possibility to use PWA which is a cheap replacement for a mobile app (but more less popular). -Docker images. -Kubernetes to orchestrate all the containers. -I Use Jenkins / blueocean, ansible for my CI/CD (with Github of course) -AWS of course : u can run a K8S cluster there, make it multi AZ (availability zones) to be highly available, use a load balancer and an auto scaler and ur good to go. -You can store data by taking any managed DB or u can deploy ur own (cheap but risky).

You pay less money, but u need some technical 2 - 3 guys to make that done.

Good luck

115k views115k
Comments
Michael
Michael

CEO at asencis Ltd

Jan 5, 2021

Needs advice

We develop rapidly with docker-compose orchestrated services, however, for production - we utilise the very best ideas that Kubernetes has to offer: SCALE! We can scale when needed, setting a maximum and minimum level of nodes for each application layer - scaling only when the load balancer needs it. This allowed us to reduce our devops costs by 40% whilst also maintaining an SLA of 99.87%.

272k views272k
Comments

Detailed Comparison

Kubernetes
Kubernetes
LXC
LXC

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system or application containers.

Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
-
Statistics
GitHub Stars
-
GitHub Stars
5.0K
GitHub Forks
-
GitHub Forks
1.2K
Stacks
61.2K
Stacks
116
Followers
52.8K
Followers
223
Votes
685
Votes
19
Pros & Cons
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Pros
  • 5
    Easy to use
  • 4
    Lightweight
  • 3
    Simple and powerful
  • 3
    Good security
  • 2
    LGPL
Integrations
Vagrant
Vagrant
Docker
Docker
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Google Kubernetes Engine
Google Kubernetes Engine
No integrations available

What are some alternatives to Kubernetes, LXC?

Docker

Docker

The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Docker Swarm

Docker Swarm

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

LXD

LXD

LXD isn't a rewrite of LXC, in fact it's building on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It's basically an alternative to LXC's tools and distribution template system with the added features that come from being controllable over the network.

Codefresh

Codefresh

Automate and parallelize testing. Codefresh allows teams to spin up on-demand compositions to run unit and integration tests as part of the continuous integration process. Jenkins integration allows more complex pipelines.

CAST.AI

CAST.AI

It is an AI-driven cloud optimization platform for Kubernetes. Instantly cut your cloud bill, prevent downtime, and 10X the power of DevOps.

k3s

k3s

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana