Need advice about which tool to choose?Ask the StackShare community!
Prometheus vs StatsD: What are the differences?
Developers describe Prometheus as "An open-source service monitoring system and time series database, developed by SoundCloud". Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. On the other hand, StatsD is detailed as "Simple daemon for easy stats aggregation". StatsD is a front-end proxy for the Graphite/Carbon metrics server, originally written by Etsy's Erik Kastner. StatsD is a network daemon that runs on the Node.js platform and listens for statistics, like counters and timers, sent over UDP and sends aggregates to one or more pluggable backend services (e.g., Graphite).
Prometheus and StatsD can be categorized as "Monitoring" tools.
Some of the features offered by Prometheus are:
- a multi-dimensional data model (timeseries defined by metric name and set of key/value dimensions)
- a flexible query language to leverage this dimensionality
- no dependency on distributed storage
On the other hand, StatsD provides the following key features:
- buckets: Each stat is in its own "bucket". They are not predefined anywhere. Buckets can be named anything that will translate to Graphite (periods make folders, etc)
- values: Each stat will have a value. How it is interpreted depends on modifiers. In general values should be integer.
- flush: After the flush interval timeout (defined by config.flushInterval, default 10 seconds), stats are aggregated and sent to an upstream backend service.
"Powerful easy to use monitoring" is the top reason why over 32 developers like Prometheus, while over 6 developers mention "Single responsibility" as the leading cause for choosing StatsD.
Prometheus and StatsD are both open source tools. It seems that Prometheus with 24.6K GitHub stars and 3.49K forks on GitHub has more adoption than StatsD with 14.1K GitHub stars and 1.83K GitHub forks.
Slack, Docplanner, and Uber Technologies are some of the popular companies that use Prometheus, whereas StatsD is used by Lyft, Shopify, and SendGrid. Prometheus has a broader approval, being mentioned in 235 company stacks & 84 developers stacks; compared to StatsD, which is listed in 72 company stacks and 16 developer stacks.
Looking for a tool which can be used for mainly dashboard purposes, but here are the main requirements:
- Must be able to get custom data from AS400,
- Able to display automation test results,
- System monitoring / Nginx API,
- Able to get data from 3rd parties DB.
Grafana is almost solving all the problems, except AS400 and no database to get automation test results.
You can look out for Prometheus Instrumentation (https://prometheus.io/docs/practices/instrumentation/) Client Library available in various languages https://prometheus.io/docs/instrumenting/clientlibs/ to create the custom metric you need for AS4000 and then Grafana can query the newly instrumented metric to show on the dashboard.
Hi, We have a situation, where we are using Prometheus to get system metrics from PCF (Pivotal Cloud Foundry) platform. We send that as time-series data to Cortex via a Prometheus server and built a dashboard using Grafana. There is another pipeline where we need to read metrics from a Linux server using Metricbeat, CPU, memory, and Disk. That will be sent to Elasticsearch and Grafana will pull and show the data in a dashboard.
Is it OK to use Metricbeat for Linux server or can we use Prometheus?
What is the difference in system metrics sent by Metricbeat and Prometheus node exporters?
Regards, Sunil.
If you're already using Prometheus for your system metrics, then it seems like standing up Elasticsearch just for Linux host monitoring is excessive. The node_exporter is probably sufficient if you'e looking for standard system metrics.
Another thing to consider is that Metricbeat / ELK use a push model for metrics delivery, whereas Prometheus pulls metrics from each node it is monitoring. Depending on how you manage your network security, opting for one solution over two may make things simpler.
Hi Sunil! Unfortunately, I don´t have much experience with Metricbeat so I can´t advise on the diffs with Prometheus...for Linux server, I encourage you to use Prometheus node exporter and for PCF, I would recommend using the instana tile (https://www.instana.com/supported-technologies/pivotal-cloud-foundry/). Let me know if you have further questions! Regards Jose
We're looking for a Monitoring and Logging tool. It has to support AWS (mostly 100% serverless, Lambdas, SNS, SQS, API GW, CloudFront, Autora, etc.), as well as Azure and GCP (for now mostly used as pure IaaS, with a lot of cognitive services, and mostly managed DB). Hopefully, something not as expensive as Datadog or New relic, as our SRE team could support the tool inhouse. At the moment, we primarily use CloudWatch for AWS and Pandora for most on-prem.
this is quite affordable and provides what you seem to be looking for. you can see a whole thing about the APM space here https://www.apmexperts.com/observability/ranking-the-observability-offerings/
I worked with Datadog at least one year and my position is that commercial tools like Datadog are the best option to consolidate and analyze your metrics. Obviously, if you can't pay the tool, the best free options are the mix of Prometheus with their Alert Manager and Grafana to visualize (that are complementary not substitutable). But I think that no use a good tool it's finally more expensive that use a not really good implementation of free tools and you will pay also to maintain its.
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
The objective of this work was to develop a system to monitor the materials of a production line using IoT technology. Currently, the process of monitoring and replacing parts depends on manual services. For this, load cells, microcontroller, Broker MQTT, Telegraf, InfluxDB, and Grafana were used. It was implemented in a workflow that had the function of collecting sensor data, storing it in a database, and visualizing it in the form of weight and quantity. With these developed solutions, he hopes to contribute to the logistics area, in the replacement and control of materials.
Pros of Prometheus
- Powerful easy to use monitoring47
- Flexible query language38
- Dimensional data model32
- Alerts27
- Active and responsive community23
- Extensive integrations22
- Easy to setup19
- Beautiful Model and Query language12
- Easy to extend7
- Nice6
- Written in Go3
- Good for experimentation2
- Easy for monitoring1
Pros of StatsD
- Open source9
- Single responsibility7
- Efficient wire format5
- Loads of integrations3
- Handles aggregation3
- Many implementations1
- Scales well1
- Simple to use1
- NodeJS1
Sign up to add or upvote prosMake informed product decisions
Cons of Prometheus
- Just for metrics12
- Bad UI6
- Needs monitoring to access metrics endpoints6
- Not easy to configure and use4
- Supports only active agents3
- Written in Go2
- TLS is quite difficult to understand2
- Requires multiple applications and tools2
- Single point of failure1
Cons of StatsD
- No authentication; cannot be used over Internet1