Alternatives to Amazon SimpleDB logo

Alternatives to Amazon SimpleDB

MySQL, MongoDB, Amazon DynamoDB, Cloud Firestore, and Azure Cosmos DB are the most popular alternatives and competitors to Amazon SimpleDB.
20
43
+ 1
0

What is Amazon SimpleDB and what are its top alternatives?

Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest. Behind the scenes, Amazon SimpleDB creates and manages multiple geographically distributed replicas of your data automatically to enable high availability and data durability. Amazon SimpleDB provides a simple web services interface to create and store multiple data sets, query your data easily, and return the results. Your data is automatically indexed, making it easy to quickly find the information that you need. There is no need to pre-define a schema or change a schema if new data is added later. And scale-out is as simple as creating new domains, rather than building out new servers.
Amazon SimpleDB is a tool in the NoSQL Database as a Service category of a tech stack.

Top Alternatives to Amazon SimpleDB

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Amazon DynamoDB
    Amazon DynamoDB

    With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use. ...

  • Cloud Firestore
    Cloud Firestore

    Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale. ...

  • Azure Cosmos DB
    Azure Cosmos DB

    Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development. ...

  • Google Cloud Datastore
    Google Cloud Datastore

    Use a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries. ...

  • Google Cloud Bigtable
    Google Cloud Bigtable

    Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail. ...

  • Firebase Realtime Database
    Firebase Realtime Database

    It is a cloud-hosted NoSQL database that lets you store and sync data between your users in realtime. Data is synced across all clients in realtime, and remains available when your app goes offline. ...

Amazon SimpleDB alternatives & related posts

MySQL logo

MySQL

95.3K
78.4K
3.7K
The world's most popular open source database
95.3K
78.4K
+ 1
3.7K
PROS OF MYSQL
  • 795
    Sql
  • 673
    Free
  • 556
    Easy
  • 527
    Widely used
  • 485
    Open source
  • 180
    High availability
  • 160
    Cross-platform support
  • 104
    Great community
  • 78
    Secure
  • 75
    Full-text indexing and searching
  • 25
    Fast, open, available
  • 14
    SSL support
  • 13
    Robust
  • 13
    Reliable
  • 8
    Enterprise Version
  • 7
    Easy to set up on all platforms
  • 2
    NoSQL access to JSON data type
  • 1
    Replica Support
  • 1
    Relational database
  • 1
    Easy, light, scalable
  • 1
    Sequel Pro (best SQL GUI)
CONS OF MYSQL
  • 14
    Owned by a company with their own agenda
  • 1
    Can't roll back schema changes

related MySQL posts

Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 21 upvotes · 1.2M views

Our most popular (& controversial!) article to date on the Uber Engineering blog in 3+ yrs. Why we moved from PostgreSQL to MySQL. In essence, it was due to a variety of limitations of Postgres at the time. Fun fact -- earlier in Uber's history we'd actually moved from MySQL to Postgres before switching back for good, & though we published the article in Summer 2016 we haven't looked back since:

The early architecture of Uber consisted of a monolithic backend application written in Python that used Postgres for data persistence. Since that time, the architecture of Uber has changed significantly, to a model of microservices and new data platforms. Specifically, in many of the cases where we previously used Postgres, we now use Schemaless, a novel database sharding layer built on top of MySQL (https://eng.uber.com/schemaless-part-one/). In this article, we’ll explore some of the drawbacks we found with Postgres and explain the decision to build Schemaless and other backend services on top of MySQL:

https://eng.uber.com/mysql-migration/

See more
MongoDB logo

MongoDB

72.2K
61.2K
4.1K
The database for giant ideas
72.2K
61.2K
+ 1
4.1K
PROS OF MONGODB
  • 828
    Document-oriented storage
  • 593
    No sql
  • 549
    Ease of use
  • 465
    Fast
  • 408
    High performance
  • 256
    Free
  • 215
    Open source
  • 180
    Flexible
  • 143
    Replication & high availability
  • 110
    Easy to maintain
  • 42
    Querying
  • 38
    Easy scalability
  • 37
    Auto-sharding
  • 36
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Full index support
  • 25
    Easy setup
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 3
    Drivers support is good
  • 3
    Aggregation Framework
  • 3
    Support for many languages through different drivers
  • 2
    Awesome
  • 2
    Schemaless
  • 2
    Managed service
  • 2
    Fast
  • 2
    Easy to Scale
  • 1
    Consistent
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 1
    Proprietary query language

related MongoDB posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Amazon DynamoDB logo

Amazon DynamoDB

4.6K
2.9K
195
Fully managed NoSQL database service
4.6K
2.9K
+ 1
195
PROS OF AMAZON DYNAMODB
  • 62
    Predictable performance and cost
  • 56
    Scalable
  • 35
    Native JSON Support
  • 21
    AWS Free Tier
  • 7
    Fast
  • 3
    No sql
  • 3
    To store data
  • 2
    Serverless
  • 2
    No Stored procedures is GOOD
  • 1
    ORM with DynamoDBMapper
  • 1
    Elastic Scalability using on-demand mode
  • 1
    Elastic Scalability using autoscaling
  • 1
    DynamoDB Stream
CONS OF AMAZON DYNAMODB
  • 4
    Only sequential access for paginate data
  • 1
    Scaling
  • 1
    Document Limit Size

related Amazon DynamoDB posts

Praveen Mooli
Engineering Manager at Taylor and Francis · | 17 upvotes · 2.3M views

We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

To build #Webapps we decided to use Angular 2 with RxJS

#Devops - GitHub , Travis CI , Terraform , Docker , Serverless

See more
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 2.5M views

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Cloud Firestore logo

Cloud Firestore

620
782
111
NoSQL database built for global apps
620
782
+ 1
111
PROS OF CLOUD FIRESTORE
  • 15
    Cloud Storage
  • 15
    Easy to use
  • 12
    Realtime Database
  • 12
    Easy setup
  • 9
    Super fast
  • 8
    Authentication
  • 6
    Realtime listeners
  • 5
    Could Messaging
  • 5
    Hosting
  • 5
    Google Analytics integration
  • 4
    Performance Monitoring
  • 4
    Crash Reporting
  • 3
    Sharing App via invites
  • 3
    Test Lab for Android
  • 3
    Adwords, Admob integration
  • 2
    Dynamic Links (Deeplinking support)
  • 0
    Robust ALI
CONS OF CLOUD FIRESTORE
  • 6
    Doesn't support FullTextSearch natively

related Cloud Firestore posts

Fontumi focuses on the development of telecommunications solutions. We have opted for technologies that allow agile development and great scalability.

Firebase and Node.js + FeathersJS are technologies that we have used on the server side. Vue.js is our main framework for clients.

Our latest products launched have been focused on the integration of AI systems for enriched conversations. Google Compute Engine , along with Dialogflow and Cloud Firestore have been important tools for this work.

Git + GitHub + Visual Studio Code is a killer stack.

See more

We are building a social media app, where users will post images, like their post, and make friends based on their interest. We are currently using Cloud Firestore and Firebase Realtime Database. We are looking for another database like Amazon DynamoDB; how much this decision can be efficient in terms of pricing and overhead?

See more
Azure Cosmos DB logo

Azure Cosmos DB

478
899
129
A fully-managed, globally distributed NoSQL database service
478
899
+ 1
129
PROS OF AZURE COSMOS DB
  • 28
    Best-of-breed NoSQL features
  • 21
    High scalability
  • 15
    Globally distributed
  • 14
    Automatic indexing over flexible json data model
  • 10
    Always on with 99.99% availability sla
  • 10
    Tunable consistency
  • 7
    Javascript language integrated transactions and queries
  • 6
    Predictable performance
  • 5
    Analytics Store
  • 5
    High performance
  • 2
    Rapid Development
  • 2
    No Sql
  • 2
    Auto Indexing
  • 2
    Ease of use
CONS OF AZURE COSMOS DB
  • 16
    Pricing
  • 4
    Poor No SQL query support

related Azure Cosmos DB posts

We have an in-house build experiment management system. We produce samples as input to the next step, which then could produce 1 sample(1-1) and many samples (1 - many). There are many steps like this. So far, we are tracking genealogy (limited tracking) in the MySQL database, which is becoming hard to trace back to the original material or sample(I can give more details if required). So, we are considering a Graph database. I am requesting advice from the experts.

  1. Is a graph database the right choice, or can we manage with RDBMS?
  2. If RDBMS, which RDMS, which feature, or which approach could make this manageable or sustainable
  3. If Graph database(Neo4j, OrientDB, Azure Cosmos DB, Amazon Neptune, ArangoDB), which one is good, and what are the best practices?

I am sorry that this might be a loaded question.

See more
Stephen Gheysens
Senior Solutions Engineer at Twilio · | 6 upvotes · 19.9K views

Hi Mohamad, out of these two options, I'd recommend starting with MongoDB (on MongoDB Atlas) for a few reasons:

• Open Source & Portability - With MongoDB being open source, you have transparency into how your system will work. Not only can you see how it works, but you later have the option to migrate to self-hosted versions of the platform (decreasing costs and avoiding vendor lock-in) or move to a Mongo-compatible hosted database like Amazon DocumentDB or Azure Cosmos DB.

• Querying & Aggregation - MongoDB has been around a few years longer than Firebase, and in my opinion, that is evident from the great design and flexibility of APIs you have for querying and aggregating data.

• Tooling - MongoDB Atlas monitoring tools and the Compass GUI are great for understanding and interacting with the data in your database as you're growing your platform.

I hope this helps!

See more
Google Cloud Datastore logo

Google Cloud Datastore

214
312
12
A Fully Managed NoSQL Data Storage Service
214
312
+ 1
12
PROS OF GOOGLE CLOUD DATASTORE
  • 7
    High scalability
  • 2
    Serverless
  • 2
    Ability to query any property
  • 1
    Pay for what you use
CONS OF GOOGLE CLOUD DATASTORE
    Be the first to leave a con

    related Google Cloud Datastore posts

    Google Cloud Bigtable logo

    Google Cloud Bigtable

    119
    310
    24
    The same database that powers Google Search, Gmail and Analytics
    119
    310
    + 1
    24
    PROS OF GOOGLE CLOUD BIGTABLE
    • 10
      High performance
    • 9
      Fully managed
    • 5
      High scalability
    CONS OF GOOGLE CLOUD BIGTABLE
      Be the first to leave a con

      related Google Cloud Bigtable posts

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Firebase Realtime Database logo

      Firebase Realtime Database

      91
      190
      5
      Store and sync data in real time
      91
      190
      + 1
      5
      PROS OF FIREBASE REALTIME DATABASE
      • 5
        Very fast
      CONS OF FIREBASE REALTIME DATABASE
      • 1
        Poor query

      related Firebase Realtime Database posts

      We are building a social media app, where users will post images, like their post, and make friends based on their interest. We are currently using Cloud Firestore and Firebase Realtime Database. We are looking for another database like Amazon DynamoDB; how much this decision can be efficient in terms of pricing and overhead?

      See more