Alternatives to Amazon SimpleDB logo

Alternatives to Amazon SimpleDB

MongoDB, Amazon DynamoDB, Cloud Firestore, Azure Cosmos DB, and Google Cloud Datastore are the most popular alternatives and competitors to Amazon SimpleDB.
17
26
+ 1
0

What is Amazon SimpleDB and what are its top alternatives?

Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest. Behind the scenes, Amazon SimpleDB creates and manages multiple geographically distributed replicas of your data automatically to enable high availability and data durability. Amazon SimpleDB provides a simple web services interface to create and store multiple data sets, query your data easily, and return the results. Your data is automatically indexed, making it easy to quickly find the information that you need. There is no need to pre-define a schema or change a schema if new data is added later. And scale-out is as simple as creating new domains, rather than building out new servers.
Amazon SimpleDB is a tool in the NoSQL Database as a Service category of a tech stack.

Amazon SimpleDB alternatives & related posts

MongoDB logo

MongoDB

21.3K
17.8K
3.9K
21.3K
17.8K
+ 1
3.9K
The database for giant ideas
MongoDB logo
MongoDB
VS
Amazon SimpleDB logo
Amazon SimpleDB

related MongoDB posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 24 upvotes · 732.8K views
atFundsCornerFundsCorner
MongoDB
MongoDB
PostgreSQL
PostgreSQL
MongoDB Stitch
MongoDB Stitch
Node.js
Node.js
Amazon SQS
Amazon SQS
Python
Python
SQLAlchemy
SQLAlchemy
AWS Lambda
AWS Lambda
Zappa
Zappa

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 550K views
atCircleCICircleCI
MongoDB
MongoDB
PostgreSQL
PostgreSQL
Redis
Redis
GitHub
GitHub
Amazon S3
Amazon S3

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more

related Amazon DynamoDB posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 1.1M views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Dmitry Mukhin
Dmitry Mukhin
CTO at Uploadcare · | 15 upvotes · 107.5K views
atUploadcareUploadcare
Google App Engine
Google App Engine
Python
Python
Redis
Redis
Amazon S3
Amazon S3
Amazon DynamoDB
Amazon DynamoDB
PostgreSQL
PostgreSQL

Uploadcare has built an infinitely scalable infrastructure by leveraging AWS. Building on top of AWS allows us to process 350M daily requests for file uploads, manipulations, and deliveries. When we started in 2011 the only cloud alternative to AWS was Google App Engine which was a no-go for a rather complex solution we wanted to build. We also didn’t want to buy any hardware or use co-locations.

Our stack handles receiving files, communicating with external file sources, managing file storage, managing user and file data, processing files, file caching and delivery, and managing user interface dashboards.

At its core, Uploadcare runs on Python. The Europython 2011 conference in Florence really inspired us, coupled with the fact that it was general enough to solve all of our challenges informed this decision. Additionally we had prior experience working in Python.

We chose to build the main application with Django because of its feature completeness and large footprint within the Python ecosystem.

All the communications within our ecosystem occur via several HTTP APIs, Redis, Amazon S3, and Amazon DynamoDB. We decided on this architecture so that our our system could be scalable in terms of storage and database throughput. This way we only need Django running on top of our database cluster. We use PostgreSQL as our database because it is considered an industry standard when it comes to clustering and scaling.

See more

related Cloud Firestore posts

fontumi
fontumi
Firebase
Firebase
Node.js
Node.js
FeathersJS
FeathersJS
Vue.js
Vue.js
Google Compute Engine
Google Compute Engine
Dialogflow
Dialogflow
Cloud Firestore
Cloud Firestore
Git
Git
GitHub
GitHub
Visual Studio Code
Visual Studio Code

Fontumi focuses on the development of telecommunications solutions. We have opted for technologies that allow agile development and great scalability.

Firebase and Node.js + FeathersJS are technologies that we have used on the server side. Vue.js is our main framework for clients.

Our latest products launched have been focused on the integration of AI systems for enriched conversations. Google Compute Engine , along with Dialogflow and Cloud Firestore have been important tools for this work.

Git + GitHub + Visual Studio Code is a killer stack.

See more
Pran B.
Pran B.
Fullstack Developer at Growbox · | 6 upvotes · 216.1K views
Flutter
Flutter
Cloud Firestore
Cloud Firestore
SQLite
SQLite

Goal/Problem: A small mobile app (using Flutter ) for saving data offline ( some data offline) and rest data need to be synced with Cloud Firestore Tools: Cloud Firestore , SQLite Decision/Considering/Need suggestions: There is no state management in the app yet. There is a requirement to store some data offline and it should be available easily (when the phone is offline) and some data needs to stored in the cloud. I am considering using sqlflite for phone storage and firestore to sync and manage the online database. I am using flutter to build the app, I couldn't find a reliable way to use firestore cache for reading the data when phonphone is offline. So I came up with the above solution. Please suggest is this good?

See more
Google Cloud Bigtable logo

Google Cloud Bigtable

68
85
12
68
85
+ 1
12
The same database that powers Google Search, Gmail and Analytics
Google Cloud Bigtable logo
Google Cloud Bigtable
VS
Amazon SimpleDB logo
Amazon SimpleDB

related Google Cloud Bigtable posts

Google Cloud IoT Core
Google Cloud IoT Core
Terraform
Terraform
Python
Python
Google Cloud Deployment Manager
Google Cloud Deployment Manager
Google Cloud Build
Google Cloud Build
Google Cloud Run
Google Cloud Run
Google Cloud Bigtable
Google Cloud Bigtable
Google BigQuery
Google BigQuery
Google Cloud Storage
Google Cloud Storage
Google Compute Engine
Google Compute Engine
GitHub
GitHub

Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

Check Out My Architecture: CLICK ME

Check out the GitHub repo attached

See more
Cloudant logo

Cloudant

35
38
21
35
38
+ 1
21
Distributed database-as-a-service (DBaaS) for web & mobile apps.
Cloudant logo
Cloudant
VS
Amazon SimpleDB logo
Amazon SimpleDB

related Cloudant posts

Josh Dzielak
Josh Dzielak
Developer Advocate at DeveloperMode · | 5 upvotes · 133.5K views
Firebase
Firebase
Pouchdb
Pouchdb
CouchDB
CouchDB
Cloudant
Cloudant

As a side project, I was building a note taking app that needed to synchronize between the client and the server so that it would work offline. At first I used Firebase to store the data on the server and wrote my own code to cache Firebase data in local storage and synchronize it. This was brittle and not performant. I figured that someone else must have solved this in a better way so I went looking for a better solution.

I needed a tool where I could write the data once and it would write to client and server, and when clients came back on line they would automatically catch the client up. I also needed conflict resolution. I was thrilled to discover Pouchdb and its server-side counterpart CouchDB. Together, they met nearly all of my requirements and were very easy to implement - I was able to remove a ton of custom code and have found the synchronization to be very robust. Pouchdb 7 has improved mobile support too, so I can run the app on iOS or Android browsers.

My Couchdb instance is actually a Cloudant instance running on IBM Bluemix. For my fairly low level of API usage, it's been totally free, and it has a decent GUI for managing users and replications.

See more
Firebase Realtime Database logo

Firebase Realtime Database

15
11
0
15
11
+ 1
0
Store and sync data in real time
    Be the first to leave a pro
    Firebase Realtime Database logo
    Firebase Realtime Database
    VS
    Amazon SimpleDB logo
    Amazon SimpleDB