Alternatives to dbt logo

Alternatives to dbt

act, Airflow, Looker, Apache Spark, and MySQL are the most popular alternatives and competitors to dbt.
490
15

What is dbt and what are its top alternatives?

Dbt (data build tool) is an open-source tool that enables data analysts and engineers to transform data in their warehouses by writing SQL queries. Key features include data transformation workflows, version control, testing, documentation, and a powerful CLI. However, some limitations of dbt include limited support for non-SQL transformations, lack of real-time processing capabilities, and a steeper learning curve for beginners.

  1. Airflow: Apache Airflow is a platform to programmatically author, schedule, and monitor workflows. Key features include workflow automation, extensibility, and rich ecosystem of integrations. Pros include advanced scheduling capabilities and a wide range of integrations, while cons include complex setup and configuration.
  2. Prefect: Prefect is a workflow management system designed for modern infrastructure. Key features include dynamic workflows, parameterization, and advanced monitoring. Pros include simplicity and flexibility, while cons include a smaller community compared to other tools.
  3. Dagster: Dagster is a data orchestration system for machine learning, analytics, and ETL. Key features include data pipelines, declarative configuration, and testing. Pros include a focus on data quality and seamless integration with ML frameworks, while cons include a newer tool with less extensive documentation.
  4. Singer: Singer is an open-source framework for ETL that allows you to easily move data between systems. Key features include modular taps and targets, easy extensibility, and simple configuration. Pros include a lightweight and flexible approach to data integration, while cons include less support for complex data transformation logic.
  5. Luigi: Luigi is a Python-based workflow management system that helps automate complex pipelines. Key features include task dependency management, workflow visualization, and task retry mechanisms. Pros include a simple and intuitive interface, while cons include a lack of built-in data transformation capabilities.
  6. Kedro: Kedro is a development workflow tool that helps you build data pipelines. Key features include data modeling, pipeline visualization, and project template. Pros include a focus on reproducibility and modularity, while cons include a more developer-centric tool compared to dbt.
  7. Dataform: Dataform is a SQL-based tool for data transformation and orchestration. Key features include data testing, scheduling, and collaborative workflows. Pros include seamless SQL integration and version control, while cons include a more limited range of data sources compared to dbt.
  8. dagster-millenium-falcon: This library provides a set of tools to create Airflow-native pipelines with the structure and confidence of dagster. Key features include integration with Airflow, dependency graph visualization, and reusable components. Pros include leveraging the strengths of both dagster and Airflow, while cons include potential compatibility issues as a newer tool.
  9. Cube.js: Cube.js is an open-source analytics layer that helps you create analytics APIs fast. Key features include pre-aggregated data, real-time analytics, and charting libraries integration. Pros include real-time data processing capabilities, while cons include a focus on analytics rather than ETL transformations.
  10. Pachyderm: Pachyderm is a data versioning tool that allows you to keep track of changes to your data pipeline. Key features include versioned data processing, containerized data pipelines, and data lineage tracking. Pros include a strong focus on data versioning and reproducibility, while cons include a more complex setup compared to dbt.

Top Alternatives to dbt

  • act
    act

    Rather than having to commit/push every time you want test out the changes you are making to your .github/workflows/ files (or for any changes to embedded GitHub actions), you can use this tool to run the actions locally. The environment variables and filesystem are all configured to match what GitHub provides. ...

  • Airflow
    Airflow

    Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. ...

  • Looker
    Looker

    We've built a unique data modeling language, connections to today's fastest analytical databases, and a service that you can deploy on any infrastructure, and explore on any device. Plus, we'll help you every step of the way. ...

  • Apache Spark
    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

dbt alternatives & related posts

act logo

act

6
23
0
Run your GitHub Actions locally
6
23
+ 1
0
PROS OF ACT
    Be the first to leave a pro
    CONS OF ACT
      Be the first to leave a con

      related act posts

      Airflow logo

      Airflow

      1.7K
      2.7K
      128
      A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb
      1.7K
      2.7K
      + 1
      128
      PROS OF AIRFLOW
      • 53
        Features
      • 14
        Task Dependency Management
      • 12
        Beautiful UI
      • 12
        Cluster of workers
      • 10
        Extensibility
      • 6
        Open source
      • 5
        Complex workflows
      • 5
        Python
      • 3
        Good api
      • 3
        Apache project
      • 3
        Custom operators
      • 2
        Dashboard
      CONS OF AIRFLOW
      • 2
        Observability is not great when the DAGs exceed 250
      • 2
        Running it on kubernetes cluster relatively complex
      • 2
        Open source - provides minimum or no support
      • 1
        Logical separation of DAGs is not straight forward

      related Airflow posts

      Data science and engineering teams at Lyft maintain several big data pipelines that serve as the foundation for various types of analysis throughout the business.

      Apache Airflow sits at the center of this big data infrastructure, allowing users to “programmatically author, schedule, and monitor data pipelines.” Airflow is an open source tool, and “Lyft is the very first Airflow adopter in production since the project was open sourced around three years ago.”

      There are several key components of the architecture. A web UI allows users to view the status of their queries, along with an audit trail of any modifications the query. A metadata database stores things like job status and task instance status. A multi-process scheduler handles job requests, and triggers the executor to execute those tasks.

      Airflow supports several executors, though Lyft uses CeleryExecutor to scale task execution in production. Airflow is deployed to three Amazon Auto Scaling Groups, with each associated with a celery queue.

      Audit logs supplied to the web UI are powered by the existing Airflow audit logs as well as Flask signal.

      Datadog, Statsd, Grafana, and PagerDuty are all used to monitor the Airflow system.

      See more

      We are a young start-up with 2 developers and a team in India looking to choose our next ETL tool. We have a few processes in Azure Data Factory but are looking to switch to a better platform. We were debating Trifacta and Airflow. Or even staying with Azure Data Factory. The use case will be to feed data to front-end APIs.

      See more
      Looker logo

      Looker

      612
      641
      9
      Pioneering the next generation of BI, data discovery & data analytics
      612
      641
      + 1
      9
      PROS OF LOOKER
      • 4
        Real time in app customer chat support
      • 4
        GitHub integration
      • 1
        Reduces the barrier of entry to utilizing data
      CONS OF LOOKER
      • 3
        Price

      related Looker posts

      Robert Zuber

      Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.

      We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.

      See more
      Mohan Ramanujam

      We are a consumer mobile app IOS/Android startup. The app is instrumented with branch and Firebase. We use Google BigQuery. We are looking at tools that can support engagement and cohort analysis at an early stage price which we can grow with. Data Studio is the default but it would seem Looker provides more power. We don't have much insight into Amplitude other than the fact it is a popular PM tool. Please provide some insight.

      See more
      Apache Spark logo

      Apache Spark

      3K
      3.5K
      140
      Fast and general engine for large-scale data processing
      3K
      3.5K
      + 1
      140
      PROS OF APACHE SPARK
      • 61
        Open-source
      • 48
        Fast and Flexible
      • 8
        One platform for every big data problem
      • 8
        Great for distributed SQL like applications
      • 6
        Easy to install and to use
      • 3
        Works well for most Datascience usecases
      • 2
        Interactive Query
      • 2
        Machine learning libratimery, Streaming in real
      • 2
        In memory Computation
      CONS OF APACHE SPARK
      • 4
        Speed

      related Apache Spark posts

      Eric Colson
      Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.1M views

      The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

      Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

      At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

      For more info:

      #DataScience #DataStack #Data

      See more
      Patrick Sun
      Software Engineer at Stitch Fix · | 10 upvotes · 60.7K views

      As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

      The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

      See more
      MySQL logo

      MySQL

      125.3K
      106K
      3.8K
      The world's most popular open source database
      125.3K
      106K
      + 1
      3.8K
      PROS OF MYSQL
      • 800
        Sql
      • 679
        Free
      • 562
        Easy
      • 528
        Widely used
      • 490
        Open source
      • 180
        High availability
      • 160
        Cross-platform support
      • 104
        Great community
      • 79
        Secure
      • 75
        Full-text indexing and searching
      • 26
        Fast, open, available
      • 16
        Reliable
      • 16
        SSL support
      • 15
        Robust
      • 9
        Enterprise Version
      • 7
        Easy to set up on all platforms
      • 3
        NoSQL access to JSON data type
      • 1
        Relational database
      • 1
        Easy, light, scalable
      • 1
        Sequel Pro (best SQL GUI)
      • 1
        Replica Support
      CONS OF MYSQL
      • 16
        Owned by a company with their own agenda
      • 3
        Can't roll back schema changes

      related MySQL posts

      Nick Rockwell
      SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

      When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

      So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

      React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

      Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

      See more
      Tim Abbott

      We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

      We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

      And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

      I can't recommend it highly enough.

      See more
      PostgreSQL logo

      PostgreSQL

      98.2K
      82.2K
      3.5K
      A powerful, open source object-relational database system
      98.2K
      82.2K
      + 1
      3.5K
      PROS OF POSTGRESQL
      • 763
        Relational database
      • 510
        High availability
      • 439
        Enterprise class database
      • 383
        Sql
      • 304
        Sql + nosql
      • 173
        Great community
      • 147
        Easy to setup
      • 131
        Heroku
      • 130
        Secure by default
      • 113
        Postgis
      • 50
        Supports Key-Value
      • 48
        Great JSON support
      • 34
        Cross platform
      • 33
        Extensible
      • 28
        Replication
      • 26
        Triggers
      • 23
        Multiversion concurrency control
      • 23
        Rollback
      • 21
        Open source
      • 18
        Heroku Add-on
      • 17
        Stable, Simple and Good Performance
      • 15
        Powerful
      • 13
        Lets be serious, what other SQL DB would you go for?
      • 11
        Good documentation
      • 9
        Scalable
      • 8
        Free
      • 8
        Reliable
      • 8
        Intelligent optimizer
      • 7
        Transactional DDL
      • 7
        Modern
      • 6
        One stop solution for all things sql no matter the os
      • 5
        Relational database with MVCC
      • 5
        Faster Development
      • 4
        Full-Text Search
      • 4
        Developer friendly
      • 3
        Excellent source code
      • 3
        Free version
      • 3
        Great DB for Transactional system or Application
      • 3
        Relational datanbase
      • 3
        search
      • 3
        Open-source
      • 2
        Text
      • 2
        Full-text
      • 1
        Can handle up to petabytes worth of size
      • 1
        Composability
      • 1
        Multiple procedural languages supported
      • 0
        Native
      CONS OF POSTGRESQL
      • 10
        Table/index bloatings

      related PostgreSQL posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more
      MongoDB logo

      MongoDB

      93.5K
      80.7K
      4.1K
      The database for giant ideas
      93.5K
      80.7K
      + 1
      4.1K
      PROS OF MONGODB
      • 828
        Document-oriented storage
      • 593
        No sql
      • 553
        Ease of use
      • 464
        Fast
      • 410
        High performance
      • 255
        Free
      • 218
        Open source
      • 180
        Flexible
      • 145
        Replication & high availability
      • 112
        Easy to maintain
      • 42
        Querying
      • 39
        Easy scalability
      • 38
        Auto-sharding
      • 37
        High availability
      • 31
        Map/reduce
      • 27
        Document database
      • 25
        Easy setup
      • 25
        Full index support
      • 16
        Reliable
      • 15
        Fast in-place updates
      • 14
        Agile programming, flexible, fast
      • 12
        No database migrations
      • 8
        Easy integration with Node.Js
      • 8
        Enterprise
      • 6
        Enterprise Support
      • 5
        Great NoSQL DB
      • 4
        Support for many languages through different drivers
      • 3
        Schemaless
      • 3
        Aggregation Framework
      • 3
        Drivers support is good
      • 2
        Fast
      • 2
        Managed service
      • 2
        Easy to Scale
      • 2
        Awesome
      • 2
        Consistent
      • 1
        Good GUI
      • 1
        Acid Compliant
      CONS OF MONGODB
      • 6
        Very slowly for connected models that require joins
      • 3
        Not acid compliant
      • 2
        Proprietary query language

      related MongoDB posts

      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more
      Robert Zuber

      We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

      As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

      When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

      See more
      Redis logo

      Redis

      59.4K
      45.7K
      3.9K
      Open source (BSD licensed), in-memory data structure store
      59.4K
      45.7K
      + 1
      3.9K
      PROS OF REDIS
      • 886
        Performance
      • 542
        Super fast
      • 513
        Ease of use
      • 444
        In-memory cache
      • 324
        Advanced key-value cache
      • 194
        Open source
      • 182
        Easy to deploy
      • 164
        Stable
      • 155
        Free
      • 121
        Fast
      • 42
        High-Performance
      • 40
        High Availability
      • 35
        Data Structures
      • 32
        Very Scalable
      • 24
        Replication
      • 22
        Great community
      • 22
        Pub/Sub
      • 19
        "NoSQL" key-value data store
      • 16
        Hashes
      • 13
        Sets
      • 11
        Sorted Sets
      • 10
        NoSQL
      • 10
        Lists
      • 9
        Async replication
      • 9
        BSD licensed
      • 8
        Bitmaps
      • 8
        Integrates super easy with Sidekiq for Rails background
      • 7
        Keys with a limited time-to-live
      • 7
        Open Source
      • 6
        Lua scripting
      • 6
        Strings
      • 5
        Awesomeness for Free
      • 5
        Hyperloglogs
      • 4
        Transactions
      • 4
        Outstanding performance
      • 4
        Runs server side LUA
      • 4
        LRU eviction of keys
      • 4
        Feature Rich
      • 4
        Written in ANSI C
      • 4
        Networked
      • 3
        Data structure server
      • 3
        Performance & ease of use
      • 2
        Dont save data if no subscribers are found
      • 2
        Automatic failover
      • 2
        Easy to use
      • 2
        Temporarily kept on disk
      • 2
        Scalable
      • 2
        Existing Laravel Integration
      • 2
        Channels concept
      • 2
        Object [key/value] size each 500 MB
      • 2
        Simple
      CONS OF REDIS
      • 15
        Cannot query objects directly
      • 3
        No secondary indexes for non-numeric data types
      • 1
        No WAL

      related Redis posts

      Russel Werner
      Lead Engineer at StackShare · | 32 upvotes · 2.8M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more