Alternatives to MonetDB logo

Alternatives to MonetDB

Cassandra, MemSQL, MySQL, Clickhouse, and Vertica are the most popular alternatives and competitors to MonetDB.
13
35
+ 1
2

What is MonetDB and what are its top alternatives?

MonetDB innovates at all layers of a DBMS, e.g. a storage model based on vertical fragmentation, a modern CPU-tuned query execution architecture, automatic and self-tuning indexes, run-time query optimization, and a modular software architecture.
MonetDB is a tool in the Databases category of a tech stack.

Top Alternatives to MonetDB

  • Cassandra
    Cassandra

    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL. ...

  • MemSQL
    MemSQL

    MemSQL converges transactions and analytics for sub-second data processing and reporting. Real-time businesses can build robust applications on a simple and scalable infrastructure that complements and extends existing data pipelines. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • Clickhouse
    Clickhouse

    It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query. ...

  • Vertica
    Vertica

    It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure. ...

  • MariaDB
    MariaDB

    Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

MonetDB alternatives & related posts

Cassandra logo

Cassandra

3.6K
507
A partitioned row store. Rows are organized into tables with a required primary key.
3.6K
507
PROS OF CASSANDRA
  • 119
    Distributed
  • 98
    High performance
  • 81
    High availability
  • 74
    Easy scalability
  • 53
    Replication
  • 26
    Reliable
  • 26
    Multi datacenter deployments
  • 10
    Schema optional
  • 9
    OLTP
  • 8
    Open source
  • 2
    Workload separation (via MDC)
  • 1
    Fast
CONS OF CASSANDRA
  • 3
    Reliability of replication
  • 1
    Size
  • 1
    Updates

related Cassandra posts

Thierry Schellenbach
Shared insights
on
RedisRedisCassandraCassandraRocksDBRocksDB
at

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more

Trying to establish a data lake(or maybe puddle) for my org's Data Sharing project. The idea is that outside partners would send cuts of their PHI data, regardless of format/variables/systems, to our Data Team who would then harmonize the data, create data marts, and eventually use it for something. End-to-end, I'm envisioning:

  1. Ingestion->Secure, role-based, self service portal for users to upload data (1a. bonus points if it can preform basic validations/masking)
  2. Storage->Amazon S3 seems like the cheapest. We probably won't need very big, even at full capacity. Our current storage is a secure Box folder that has ~4GB with several batches of test data, code, presentations, and planning docs.
  3. Data Catalog-> AWS Glue? Azure Data Factory? Snowplow? is the main difference basically based on the vendor? We also will have Data Dictionaries/Codebooks from submitters. Where would they fit in?
  4. Partitions-> I've seen Cassandra and YARN mentioned, but have no experience with either
  5. Processing-> We want to use SAS if at all possible. What will work with SAS code?
  6. Pipeline/Automation->The check-in and verification processes that have been outlined are rather involved. Some sort of automated messaging or approval workflow would be nice
  7. I have very little guidance on what a "Data Mart" should look like, so I'm going with the idea that it would be another "experimental" partition. Unless there's an actual mart-building paradigm I've missed?
  8. An end user might use the catalog to pull certain de-identified data sets from the marts. Again, role-based access and self-service gui would be preferable. I'm the only full-time tech person on this project, but I'm mostly an OOP, HTML, JavaScript, and some SQL programmer. Most of this is out of my repertoire. I've done a lot of research, but I can't be an effective evangelist without hands-on experience. Since we're starting a new year of our grant, they've finally decided to let me try some stuff out. Any pointers would be appreciated!
See more
MemSQL logo

MemSQL

85
44
Database for real-time transactions and analytics.
85
44
PROS OF MEMSQL
  • 9
    Distributed
  • 5
    Realtime
  • 4
    Columnstore
  • 4
    Sql
  • 4
    Concurrent
  • 4
    JSON
  • 3
    Ultra fast
  • 3
    Scalable
  • 2
    Unlimited Storage Database
  • 2
    Pipeline
  • 2
    Mixed workload
  • 2
    Availability Group
CONS OF MEMSQL
    Be the first to leave a con

    related MemSQL posts

    MySQL logo

    MySQL

    125.8K
    3.8K
    The world's most popular open source database
    125.8K
    3.8K
    PROS OF MYSQL
    • 800
      Sql
    • 679
      Free
    • 562
      Easy
    • 528
      Widely used
    • 490
      Open source
    • 180
      High availability
    • 160
      Cross-platform support
    • 104
      Great community
    • 79
      Secure
    • 75
      Full-text indexing and searching
    • 26
      Fast, open, available
    • 16
      Reliable
    • 16
      SSL support
    • 15
      Robust
    • 9
      Enterprise Version
    • 7
      Easy to set up on all platforms
    • 3
      NoSQL access to JSON data type
    • 1
      Relational database
    • 1
      Easy, light, scalable
    • 1
      Sequel Pro (best SQL GUI)
    • 1
      Replica Support
    CONS OF MYSQL
    • 16
      Owned by a company with their own agenda
    • 3
      Can't roll back schema changes

    related MySQL posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 46 upvotes · 4.2M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Tim Abbott

    We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

    We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

    And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

    I can't recommend it highly enough.

    See more
    Clickhouse logo

    Clickhouse

    412
    85
    A column-oriented database management system
    412
    85
    PROS OF CLICKHOUSE
    • 21
      Fast, very very fast
    • 11
      Good compression ratio
    • 7
      Horizontally scalable
    • 6
      Utilizes all CPU resources
    • 5
      RESTful
    • 5
      Open-source
    • 5
      Great CLI
    • 4
      Great number of SQL functions
    • 4
      Buggy
    • 3
      Server crashes its normal :(
    • 3
      Highly available
    • 3
      Flexible connection options
    • 3
      Has no transactions
    • 2
      ODBC
    • 2
      Flexible compression options
    • 1
      In IDEA data import via HTTP interface not working
    CONS OF CLICKHOUSE
    • 5
      Slow insert operations

    related Clickhouse posts

    Vertica logo

    Vertica

    88
    16
    Storage platform designed to handle large volumes of data
    88
    16
    PROS OF VERTICA
    • 3
      Shared nothing or shared everything architecture
    • 1
      Reduce costs as reduced hardware is required
    • 1
      Offers users the freedom to choose deployment mode
    • 1
      Flexible architecture suits nearly any project
    • 1
      End-to-End ML Workflow Support
    • 1
      All You Need for IoT, Clickstream or Geospatial
    • 1
      Freedom from Underlying Storage
    • 1
      Pre-Aggregation for Cubes (LAPS)
    • 1
      Automatic Data Marts (Flatten Tables)
    • 1
      Near-Real-Time Analytics in pure Column Store
    • 1
      Fully automated Database Designer tool
    • 1
      Query-Optimized Storage
    • 1
      Vertica is the only product which offers partition prun
    • 1
      Partition pruning and predicate push down on Parquet
    CONS OF VERTICA
      Be the first to leave a con

      related Vertica posts

      MariaDB logo

      MariaDB

      16.3K
      468
      An enhanced, drop-in replacement for MySQL
      16.3K
      468
      PROS OF MARIADB
      • 149
        Drop-in mysql replacement
      • 100
        Great performance
      • 74
        Open source
      • 55
        Free
      • 44
        Easy setup
      • 15
        Easy and fast
      • 14
        Lead developer is "monty" widenius the founder of mysql
      • 6
        Also an aws rds service
      • 4
        Consistent and robust
      • 4
        Learning curve easy
      • 2
        Native JSON Support / Dynamic Columns
      • 1
        Real Multi Threaded queries on a table/db
      CONS OF MARIADB
        Be the first to leave a con

        related MariaDB posts

        Tassanai Singprom

        This is my stack in Application & Data

        JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB

        My Utilities Tools

        Google Analytics Postman Elasticsearch

        My Devops Tools

        Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack

        My Business Tools

        Slack

        See more
        Joshua Dean Küpper
        CEO at Scrayos UG (haftungsbeschränkt) · | 11 upvotes · 678.3K views

        We primarily use MariaDB but use PostgreSQL as a part of GitLab , Sentry and Nextcloud , which (initially) forced us to use it anyways. While this isn't much of a decision – because we didn't have one (ha ha) – we learned to love the perks and advantages of PostgreSQL anyways. PostgreSQL's extension system makes it even more flexible than a lot of the other SQL-based DBs (that only offer stored procedures) and the additional JOIN options, the enhanced role management and the different authentication options came in really handy, when doing manual maintenance on the databases.

        See more
        MongoDB logo

        MongoDB

        93.8K
        4.1K
        The database for giant ideas
        93.8K
        4.1K
        PROS OF MONGODB
        • 828
          Document-oriented storage
        • 593
          No sql
        • 553
          Ease of use
        • 464
          Fast
        • 410
          High performance
        • 255
          Free
        • 218
          Open source
        • 180
          Flexible
        • 145
          Replication & high availability
        • 112
          Easy to maintain
        • 42
          Querying
        • 39
          Easy scalability
        • 38
          Auto-sharding
        • 37
          High availability
        • 31
          Map/reduce
        • 27
          Document database
        • 25
          Easy setup
        • 25
          Full index support
        • 16
          Reliable
        • 15
          Fast in-place updates
        • 14
          Agile programming, flexible, fast
        • 12
          No database migrations
        • 8
          Easy integration with Node.Js
        • 8
          Enterprise
        • 6
          Enterprise Support
        • 5
          Great NoSQL DB
        • 4
          Support for many languages through different drivers
        • 3
          Schemaless
        • 3
          Aggregation Framework
        • 3
          Drivers support is good
        • 2
          Fast
        • 2
          Managed service
        • 2
          Easy to Scale
        • 2
          Awesome
        • 2
          Consistent
        • 1
          Good GUI
        • 1
          Acid Compliant
        CONS OF MONGODB
        • 6
          Very slowly for connected models that require joins
        • 3
          Not acid compliant
        • 2
          Proprietary query language

        related MongoDB posts

        Jeyabalaji Subramanian

        Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

        We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

        Based on the above criteria, we selected the following tools to perform the end to end data replication:

        We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

        We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

        In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

        Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

        In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

        See more
        Robert Zuber

        We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

        As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

        When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

        See more
        PostgreSQL logo

        PostgreSQL

        98.6K
        3.5K
        A powerful, open source object-relational database system
        98.6K
        3.5K
        PROS OF POSTGRESQL
        • 764
          Relational database
        • 510
          High availability
        • 439
          Enterprise class database
        • 383
          Sql
        • 304
          Sql + nosql
        • 173
          Great community
        • 147
          Easy to setup
        • 131
          Heroku
        • 130
          Secure by default
        • 113
          Postgis
        • 50
          Supports Key-Value
        • 48
          Great JSON support
        • 34
          Cross platform
        • 33
          Extensible
        • 28
          Replication
        • 26
          Triggers
        • 23
          Multiversion concurrency control
        • 23
          Rollback
        • 21
          Open source
        • 18
          Heroku Add-on
        • 17
          Stable, Simple and Good Performance
        • 15
          Powerful
        • 13
          Lets be serious, what other SQL DB would you go for?
        • 11
          Good documentation
        • 9
          Scalable
        • 8
          Free
        • 8
          Reliable
        • 8
          Intelligent optimizer
        • 7
          Transactional DDL
        • 7
          Modern
        • 6
          One stop solution for all things sql no matter the os
        • 5
          Relational database with MVCC
        • 5
          Faster Development
        • 4
          Full-Text Search
        • 4
          Developer friendly
        • 3
          Excellent source code
        • 3
          Free version
        • 3
          Great DB for Transactional system or Application
        • 3
          Relational datanbase
        • 3
          search
        • 3
          Open-source
        • 2
          Text
        • 2
          Full-text
        • 1
          Can handle up to petabytes worth of size
        • 1
          Composability
        • 1
          Multiple procedural languages supported
        • 0
          Native
        CONS OF POSTGRESQL
        • 10
          Table/index bloatings

        related PostgreSQL posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.7M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more
        Jeyabalaji Subramanian

        Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

        We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

        Based on the above criteria, we selected the following tools to perform the end to end data replication:

        We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

        We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

        In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

        Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

        In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

        See more