Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.
Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data. | Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. |
Real-time Processing- Amazon Kinesis enables you to collect and analyze information in real-time, allowing you to answer questions about the current state of your data, from inventory levels to stock trade frequencies, rather than having to wait for an out-of-date report;Easy to use- You can create a new stream, set the throughput requirements, and start streaming data quickly and easily. Amazon Kinesis automatically provisions and manages the storage required to reliably and durably collect your data stream;High throughput. Elastic.- Amazon Kinesis seamlessly scales to match the data throughput rate and volume of your data, from megabytes to terabytes per hour. Amazon Kinesis will scale up or down based on your needs;Integrate with Amazon S3, Amazon Redshift, and Amazon DynamoDB- With Amazon Kinesis, you can reliably collect, process, and transform all of your data in real-time before delivering it to data stores of your choice, where it can be used by existing or new applications. Connectors enable integration with Amazon S3, Amazon Redshift, and Amazon DynamoDB;Build Kinesis Applications- Amazon Kinesis provides developers with client libraries that enable the design and operation of real-time data processing applications. Just add the Amazon Kinesis Client Library to your Java application and it will be notified when new data is available for processing;Low Cost- Amazon Kinesis is cost-efficient for workloads of any scale. You can pay as you go, and you’ll only pay for the resources you use. You can get started by provisioning low throughput streams, and only pay a low hourly rate for the throughput you need | Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk;Write applications quickly in Java, Scala or Python;Combine SQL, streaming, and complex analytics;Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, S3 |
Statistics | |
GitHub Stars - | GitHub Stars 42.2K |
GitHub Forks - | GitHub Forks 28.9K |
Stacks 794 | Stacks 3.1K |
Followers 604 | Followers 3.5K |
Votes 9 | Votes 140 |
Pros & Cons | |
Pros
Cons
| Pros
Cons
|

Distributed SQL Query Engine for Big Data

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Google Cloud Dataflow is a unified programming model and a managed service for developing and executing a wide range of data processing patterns including ETL, batch computation, and continuous computation. Cloud Dataflow frees you from operational tasks like resource management and performance optimization.

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.