StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. AWS Lambda vs Amazon SQS

AWS Lambda vs Amazon SQS

OverviewDecisionsComparisonAlternatives

Overview

Amazon SQS
Amazon SQS
Stacks2.8K
Followers2.0K
Votes171
AWS Lambda
AWS Lambda
Stacks26.0K
Followers18.8K
Votes432

AWS Lambda vs Amazon SQS: What are the differences?

Introduction

In this markdown, we will discuss the key differences between AWS Lambda and Amazon SQS. Both AWS Lambda and Amazon Simple Queue Service (SQS) are services provided by Amazon Web Services (AWS) that enable developers to build scalable and efficient applications. However, they have distinct functionalities and use cases.

  1. Scalability: AWS Lambda is a serverless computing service that automatically scales to handle a high volume of requests. It allows developers to run code without provisioning or managing servers. On the other hand, Amazon SQS is a fully managed message queuing service that provides distributed message queues for storing messages as they travel between different components of a distributed application. It enables decoupling of the sender and receiver, allowing scalability within the application itself.

  2. Invocation: AWS Lambda functions are triggered by events such as changes to data in an Amazon S3 bucket, updates to an Amazon DynamoDB table, or an HTTP request through Amazon API Gateway. These events invoke the Lambda function, which executes the code. On the contrary, Amazon SQS allows messages to be sent and received by any component of a distributed application. It decouples the sender from the receiver and allows the receiver to process messages at its own pace.

  3. Compute Resource: AWS Lambda functions are executed on demand, meaning that the necessary compute resources are automatically provisioned by AWS to execute the code. The function's execution environment is managed by AWS. In contrast, Amazon SQS does not execute any code itself. It simply acts as a message queue, storing messages until they are processed by a separate component or worker.

  4. Message Persistence: In AWS Lambda, messages are not persisted by default. The function is invoked with an event, processes it, and generates a response. There is no storage of messages for future retrieval. On the other hand, Amazon SQS guarantees message persistence. Messages sent to an SQS queue are stored redundantly across multiple availability zones to provide durability. The messages can be stored in the queue for a configurable retention period.

  5. Concurrency: AWS Lambda functions can scale horizontally to handle multiple requests concurrently. Each instance of the Lambda function can process a single event at a time in a separate container. The number of concurrent executions can be configured to meet the application's requirements. On the other hand, Amazon SQS can handle multiple concurrent workers that retrieve and process messages from the queue. The number of workers can be adjusted to achieve the desired throughput.

  6. Billing: AWS Lambda pricing is based on the number of requests and the duration of both the execution and the memory allocated. Users pay only for the compute resources actually consumed during code execution. Amazon SQS pricing is based on the number of requests made to the service, as well as the volume of data transferred and stored in the queues. Users pay for the number of messages sent, received, or deleted, and for storage consumed by messages.

In summary, AWS Lambda is a serverless compute service that automatically scales to handle requests, while Amazon SQS is a managed message queuing service that provides distributed message queues. Lambda executes code on demand, while SQS acts as a persistent storage and decoupling mechanism. Lambda scales horizontally with concurrent executions, while SQS handles multiple worker processes. The pricing models also differ between the two services.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon SQS, AWS Lambda

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Meili
Meili

Software engineer at Digital Science

Sep 24, 2020

Needs adviceonZeroMQZeroMQRabbitMQRabbitMQAmazon SQSAmazon SQS

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to:

  • Not loose messages in services outages
  • Safely restart service without losing messages (@{ZeroMQ}|tool:1064| seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

500k views500k
Comments
MITHIRIDI
MITHIRIDI

Software Engineer at LightMetrics

May 8, 2020

Needs adviceonAmazon SQSAmazon SQSAmazon MQAmazon MQ

I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.

Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.

303k views303k
Comments

Detailed Comparison

Amazon SQS
Amazon SQS
AWS Lambda
AWS Lambda

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

A queue can be created in any region.;The message payload can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests.;Messages can be sent, received or deleted in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.;Long polling reduces extraneous polling to help you minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.;Messages can be retained in queues for up to 14 days.;Messages can be sent and read simultaneously.;Developers can get started with Amazon SQS by using only five APIs: CreateQueue, SendMessage, ReceiveMessage, ChangeMessageVisibility, and DeleteMessage. Additional APIs are available to provide advanced functionality.
Extend other AWS services with custom logic;Build custom back-end services;Completely Automated Administration;Built-in Fault Tolerance;Automatic Scaling;Integrated Security Model;Bring Your Own Code;Pay Per Use;Flexible Resource Model
Statistics
Stacks
2.8K
Stacks
26.0K
Followers
2.0K
Followers
18.8K
Votes
171
Votes
432
Pros & Cons
Pros
  • 62
    Easy to use, reliable
  • 40
    Low cost
  • 28
    Simple
  • 14
    Doesn't need to maintain it
  • 8
    It is Serverless
Cons
  • 2
    Has a max message size (currently 256K)
  • 2
    Difficult to configure
  • 2
    Proprietary
  • 1
    Has a maximum 15 minutes of delayed messages only
Pros
  • 129
    No infrastructure
  • 83
    Cheap
  • 70
    Quick
  • 59
    Stateless
  • 47
    No deploy, no server, great sleep
Cons
  • 7
    Cant execute ruby or go
  • 3
    Compute time limited
  • 1
    Can't execute PHP w/o significant effort

What are some alternatives to Amazon SQS, AWS Lambda?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase