StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Continuous Deployment
  4. Server Configuration And Automation
  5. Ansible vs Pulumi

Ansible vs Pulumi

OverviewDecisionsComparisonAlternatives

Overview

Ansible
Ansible
Stacks19.5K
Followers15.6K
Votes1.3K
GitHub Stars66.9K
Forks24.1K
Pulumi
Pulumi
Stacks306
Followers293
Votes25
GitHub Stars24.1K
Forks1.3K

Ansible vs Pulumi: What are the differences?

Introduction

Ansible and Pulumi are both automation tools used in software development and infrastructure management. However, they have key differences that set them apart from each other.

  1. Execution Model: Ansible operates on a push-based execution model, where the control machine pushes the configurations and instructions to target machines. On the other hand, Pulumi uses a pull-based execution model, where the infrastructure resources are continuously monitored for changes and updates are automatically applied to ensure the desired state.

  2. Language Support: Ansible is primarily based on YAML, which provides a simple and human-readable syntax for defining tasks and configurations. In contrast, Pulumi supports multiple programming languages such as Python, JavaScript, TypeScript, and Go, allowing developers to express infrastructure as code using their preferred language.

  3. Cloud Provider Integration: Ansible has support for a wide range of cloud providers, enabling developers to manage and provision resources across different cloud environments. Whereas Pulumi takes a multi-cloud approach and allows developers to define infrastructure resources using a unified API that transparently supports multiple cloud providers, making it easier to deploy and manage applications across diverse cloud environments.

  4. Resource Lifecycle Management: Ansible utilizes idempotent tasks to ensure that the desired state is achieved on target machines. It focuses on executing tasks only when required and performs automatic cleanup of any unwanted changes. Pulumi, on the other hand, provides a declarative approach to resource lifecycle management, where developers define desired resources and dependencies, and Pulumi automatically manages the creation, updating, and deletion of those resources.

  5. Workflow and Versioning: Ansible employs playbooks to define and orchestrate complex deployment workflows. Playbooks can be versioned using source control tools like Git, allowing developers to track changes and roll back if necessary. Pulumi leverages modern development workflows through standard development tools like IDEs, Git, and CI/CD systems. By treating infrastructure as code, developers can leverage software development best practices, including testing frameworks, code reviews, and continuous integration.

  6. Community and Ecosystem: Ansible has a large and active community with a vast collection of pre-built Ansible roles and modules available for various use cases and integrations with other tools. Pulumi, being a newer entrant, is rapidly growing its community and ecosystem, with a focus on collaborating with existing tools and frameworks to provide seamless integration and support.

In Summary, Ansible and Pulumi differ in their execution models, language support, cloud provider integration, resource lifecycle management, workflow and versioning capabilities, and community and ecosystem size.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Ansible, Pulumi

Daniel
Daniel

May 4, 2020

Decided

Because Pulumi uses real programming languages, you can actually write abstractions for your infrastructure code, which is incredibly empowering. You still 'describe' your desired state, but by having a programming language at your fingers, you can factor out patterns, and package it up for easier consumption.

426k views426k
Comments
Sergey
Sergey

Contractor at Adaptive

Apr 17, 2020

Decided

Overview

We use Terraform to manage AWS cloud environment for the project. It is pretty complex, largely static, security-focused, and constantly evolving.

Terraform provides descriptive (declarative) way of defining the target configuration, where it can work out the dependencies between configuration elements and apply differences without re-provisioning the entire cloud stack.

Advantages

Terraform is vendor-neutral in a way that it is using a common configuration language (HCL) with plugins (providers) for multiple cloud and service providers.

Terraform keeps track of the previous state of the deployment and applies incremental changes, resulting in faster deployment times.

Terraform allows us to share reusable modules between projects. We have built an impressive library of modules internally, which makes it very easy to assemble a new project from pre-fabricated building blocks.

Disadvantages

Software is imperfect, and Terraform is no exception. Occasionally we hit annoying bugs that we have to work around. The interaction with any underlying APIs is encapsulated inside 3rd party Terraform providers, and any bug fixes or new features require a provider release. Some providers have very poor coverage of the underlying APIs.

Terraform is not great for managing highly dynamic parts of cloud environments. That part is better delegated to other tools or scripts.

Terraform state may go out of sync with the target environment or with the source configuration, which often results in painful reconciliation.

426k views426k
Comments
Anonymous
Anonymous

Sep 17, 2019

Needs advice

I'm just getting started using Vagrant to help automate setting up local VMs to set up a Kubernetes cluster (development and experimentation only). (Yes, I do know about minikube)

I'm looking for a tool to help install software packages, setup users, etc..., on these VMs. I'm also fairly new to Ansible, Chef, and Puppet. What's a good one to start with to learn? I might decide to try all 3 at some point for my own curiosity.

The most important factors for me are simplicity, ease of use, shortest learning curve.

329k views329k
Comments

Detailed Comparison

Ansible
Ansible
Pulumi
Pulumi

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use.

Pulumi is a cloud development platform that makes creating cloud programs easy and productive. Skip the YAML and just write code. Pulumi is multi-language, multi-cloud and fully extensible in both its engine and ecosystem of packages.

Ansible's natural automation language allows sysadmins, developers, and IT managers to complete automation projects in hours, not weeks.;Ansible uses SSH by default instead of requiring agents everywhere. Avoid extra open ports, improve security, eliminate "managing the management", and reclaim CPU cycles.;Ansible automates app deployment, configuration management, workflow orchestration, and even cloud provisioning all from one system.
Containers - Deploy a Docker container to production in 5 minutes using your favorite orchestrator.; Serverless - Stand up a serverless API or event handler in 5 minutes using a real lambda in code.; Infrastructure - Manage cloud infrastructure or hosted services using infrastructure as code.; CoLaDa - Embrace containers, lambdas, and data, using a modern, multi-cloud framework.
Statistics
GitHub Stars
66.9K
GitHub Stars
24.1K
GitHub Forks
24.1K
GitHub Forks
1.3K
Stacks
19.5K
Stacks
306
Followers
15.6K
Followers
293
Votes
1.3K
Votes
25
Pros & Cons
Pros
  • 284
    Agentless
  • 210
    Great configuration
  • 199
    Simple
  • 176
    Powerful
  • 155
    Easy to learn
Cons
  • 8
    Dangerous
  • 5
    Hard to install
  • 3
    Doesn't Run on Windows
  • 3
    Bloated
  • 3
    Backward compatibility
Pros
  • 8
    Infrastructure as code with less pain
  • 4
    Best-in-class kubernetes support
  • 3
    Can use many languages
  • 3
    Simple
  • 2
    Can be self-hosted
Integrations
Nexmo
Nexmo
Stackdriver
Stackdriver
VMware vSphere
VMware vSphere
Docker
Docker
OpenStack
OpenStack
Amazon EC2
Amazon EC2
Rackspace Cloud Servers
Rackspace Cloud Servers
Google Compute Engine
Google Compute Engine
New Relic
New Relic
PagerDuty
PagerDuty
No integrations available

What are some alternatives to Ansible, Pulumi?

Chef

Chef

Chef enables you to manage and scale cloud infrastructure with no downtime or interruptions. Freely move applications and configurations from one cloud to another. Chef is integrated with all major cloud providers including Amazon EC2, VMWare, IBM Smartcloud, Rackspace, OpenStack, Windows Azure, HP Cloud, Google Compute Engine, Joyent Cloud and others.

Terraform

Terraform

With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel.

Capistrano

Capistrano

Capistrano is a remote server automation tool. It supports the scripting and execution of arbitrary tasks, and includes a set of sane-default deployment workflows.

Puppet Labs

Puppet Labs

Puppet is an automated administrative engine for your Linux, Unix, and Windows systems and performs administrative tasks (such as adding users, installing packages, and updating server configurations) based on a centralized specification.

Salt

Salt

Salt is a new approach to infrastructure management. Easy enough to get running in minutes, scalable enough to manage tens of thousands of servers, and fast enough to communicate with them in seconds. Salt delivers a dynamic communication bus for infrastructures that can be used for orchestration, remote execution, configuration management and much more.

AWS CloudFormation

AWS CloudFormation

You can use AWS CloudFormation’s sample templates or create your own templates to describe the AWS resources, and any associated dependencies or runtime parameters, required to run your application. You don’t need to figure out the order in which AWS services need to be provisioned or the subtleties of how to make those dependencies work.

Fabric

Fabric

Fabric is a Python (2.5-2.7) library and command-line tool for streamlining the use of SSH for application deployment or systems administration tasks. It provides a basic suite of operations for executing local or remote shell commands (normally or via sudo) and uploading/downloading files, as well as auxiliary functionality such as prompting the running user for input, or aborting execution.

AWS OpsWorks

AWS OpsWorks

Start from templates for common technologies like Ruby, Node.JS, PHP, and Java, or build your own using Chef recipes to install software packages and perform any task that you can script. AWS OpsWorks can scale your application using automatic load-based or time-based scaling and maintain the health of your application by detecting failed instances and replacing them. You have full control of deployments and automation of each component

Packer

Packer

Packer automates the creation of any type of machine image. It embraces modern configuration management by encouraging you to use automated scripts to install and configure the software within your Packer-made images.

Scalr

Scalr

Scalr is a remote state & operations backend for Terraform with access controls, policy as code, and many quality of life features.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana