Need advice about which tool to choose?Ask the StackShare community!

Apache NiFi

254
519
+ 1
62
Apache Spark

2.4K
2.7K
+ 1
132
Add tool

Apache NiFi vs Apache Spark: What are the differences?

Apache NiFi: A reliable system to process and distribute data. An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic; Apache Spark: Fast and general engine for large-scale data processing. Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Apache NiFi and Apache Spark are primarily classified as "Stream Processing" and "Big Data" tools respectively.

Apache Spark is an open source tool with 22.5K GitHub stars and 19.4K GitHub forks. Here's a link to Apache Spark's open source repository on GitHub.

Advice on Apache NiFi and Apache Spark
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 222.5K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
Elasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 124.9K views
Recommends
Apache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Apache NiFi
Pros of Apache Spark
  • 15
    Visual Data Flows using Directed Acyclic Graphs (DAGs)
  • 8
    Free (Open Source)
  • 7
    Simple-to-use
  • 5
    Scalable horizontally as well as vertically
  • 5
    Reactive with back-pressure
  • 4
    Fast prototyping
  • 3
    Bi-directional channels
  • 2
    Data provenance
  • 2
    Built-in graphical user interface
  • 2
    End-to-end security between all nodes
  • 2
    Can handle messages up to gigabytes in size
  • 1
    Hbase support
  • 1
    Kudu support
  • 1
    Hive support
  • 1
    Slack integration
  • 1
    Support for custom Processor in Java
  • 1
    Lot of articles
  • 1
    Lots of documentation
  • 58
    Open-source
  • 48
    Fast and Flexible
  • 7
    One platform for every big data problem
  • 6
    Easy to install and to use
  • 6
    Great for distributed SQL like applications
  • 3
    Works well for most Datascience usecases
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
  • 0
    Interactive Query

Sign up to add or upvote prosMake informed product decisions

Cons of Apache NiFi
Cons of Apache Spark
  • 2
    HA support is not full fledge
  • 2
    Memory-intensive
  • 3
    Speed

Sign up to add or upvote consMake informed product decisions

- No public GitHub repository available -

What is Apache NiFi?

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

What is Apache Spark?

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Apache NiFi?
What companies use Apache Spark?
See which teams inside your own company are using Apache NiFi or Apache Spark.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Apache NiFi?
What tools integrate with Apache Spark?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Mar 24 2021 at 12:57PM

Pinterest

+7
3
1571
+6
2
1536
Aug 28 2019 at 3:10AM

Segment

+16
5
2097
What are some alternatives to Apache NiFi and Apache Spark?
Kafka
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
Apache Storm
Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.
Logstash
Logstash is a tool for managing events and logs. You can use it to collect logs, parse them, and store them for later use (like, for searching). If you store them in Elasticsearch, you can view and analyze them with Kibana.
Apache Camel
An open source Java framework that focuses on making integration easier and more accessible to developers.
Airflow
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.
See all alternatives