Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Apache Flink
Apache Flink

170
211
+ 1
11
Apache Spark
Apache Spark

1.3K
1.1K
+ 1
99
Add tool

Apache Flink vs Apache Spark: What are the differences?

Apache Flink: Fast and reliable large-scale data processing engine. Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala; Apache Spark: Fast and general engine for large-scale data processing. Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Apache Flink and Apache Spark can be primarily classified as "Big Data" tools.

Some of the features offered by Apache Flink are:

  • Hybrid batch/streaming runtime that supports batch processing and data streaming programs.
  • Custom memory management to guarantee efficient, adaptive, and highly robust switching between in-memory and data processing out-of-core algorithms.
  • Flexible and expressive windowing semantics for data stream programs

On the other hand, Apache Spark provides the following key features:

  • Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
  • Write applications quickly in Java, Scala or Python
  • Combine SQL, streaming, and complex analytics

"Unified batch and stream processing" is the top reason why over 6 developers like Apache Flink, while over 45 developers mention "Open-source" as the leading cause for choosing Apache Spark.

Apache Flink and Apache Spark are both open source tools. Apache Spark with 22.5K GitHub stars and 19.4K forks on GitHub appears to be more popular than Apache Flink with 9.35K GitHub stars and 5K GitHub forks.

According to the StackShare community, Apache Spark has a broader approval, being mentioned in 266 company stacks & 112 developers stacks; compared to Apache Flink, which is listed in 20 company stacks and 22 developer stacks.

What is Apache Flink?

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

What is Apache Spark?

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Why do developers choose Apache Flink?
Why do developers choose Apache Spark?

Sign up to add, upvote and see more prosMake informed product decisions

    Be the first to leave a con
    What companies use Apache Flink?
    What companies use Apache Spark?

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Apache Flink?
    What tools integrate with Apache Spark?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    What are some alternatives to Apache Flink and Apache Spark?
    Apache Storm
    Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.
    Beam
    A distributed knowledge graph store. Knowledge graphs are suitable for modeling data that is highly interconnected by many types of relationships, like encyclopedic information about the world.
    Apache Flume
    It is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
    Kafka Streams
    It is a client library for building applications and microservices, where the input and output data are stored in Kafka clusters. It combines the simplicity of writing and deploying standard Java and Scala applications on the client side with the benefits of Kafka's server-side cluster technology.
    Kafka
    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
    See all alternatives
    Decisions about Apache Flink and Apache Spark
    StackShare Editors
    StackShare Editors
    Hadoop
    Hadoop
    Apache Spark
    Apache Spark
    Presto
    Presto

    Around 2015, the growing use of Uber’s data exposed limitations in the ETL and Vertica-centric setup, not to mention the increasing costs. “As our company grew, scaling our data warehouse became increasingly expensive. To cut down on costs, we started deleting older, obsolete data to free up space for new data.”

    To overcome these challenges, Uber rebuilt their big data platform around Hadoop. “More specifically, we introduced a Hadoop data lake where all raw data was ingested from different online data stores only once and with no transformation during ingestion.”

    “In order for users to access data in Hadoop, we introduced Presto to enable interactive ad hoc user queries, Apache Spark to facilitate programmatic access to raw data (in both SQL and non-SQL formats), and Apache Hive to serve as the workhorse for extremely large queries.

    See more
    StackShare Editors
    StackShare Editors
    Hadoop
    Hadoop
    Apache Spark
    Apache Spark
    Presto
    Presto

    To improve platform scalability and efficiency, Uber transitioned from JSON to Parquet, and built a central schema service to manage schemas and integrate different client libraries.

    While the first generation big data platform was vulnerable to upstream data format changes, “ad hoc data ingestions jobs were replaced with a standard platform to transfer all source data in its original, nested format into the Hadoop data lake.”

    These platform changes enabled the scaling challenges Uber was facing around that time: “On a daily basis, there were tens of terabytes of new data added to our data lake, and our Big Data platform grew to over 10,000 vcores with over 100,000 running batch jobs on any given day.”

    See more
    StackShare Editors
    StackShare Editors
    Kafka
    Kafka
    MySQL
    MySQL
    Scala
    Scala
    Apache Spark
    Apache Spark
    Presto
    Presto

    Slack’s data team works to “provide an ecosystem to help people in the company quickly and easily answer questions about usage, so they can make better and data informed decisions.” To achieve that goal, that rely on a complex data pipeline.

    An in-house tool call Sqooper scrapes MySQL backups and pipe them to S3. Job queue and log data is sent to Kafka then persisted to S3 using an open source tool called Secor, which was created by Pinterest.

    For compute, Amazon’s Elastic MapReduce (EMR) creates clusters preconfigured for Presto, Hive, and Spark.

    Presto is then used for ad-hoc questions, validating data assumptions, exploring smaller datasets, and creating visualizations for some internal tools. Hive is used for larger data sets or longer time series data, and Spark allows teams to write efficient and robust batch and aggregation jobs. Most of the Spark pipeline is written in Scala.

    Thrift binds all of these engines together with a typed schema and structured data.

    Finally, the Hive Metastore serves as the ground truth for all data and its schema.

    See more
    StackShare Editors
    StackShare Editors
    Prometheus
    Prometheus
    Chef
    Chef
    Consul
    Consul
    Memcached
    Memcached
    Hack
    Hack
    Swift
    Swift
    Hadoop
    Hadoop
    Terraform
    Terraform
    Airflow
    Airflow
    Apache Spark
    Apache Spark
    Kubernetes
    Kubernetes
    gRPC
    gRPC
    HHVM (HipHop Virtual Machine)
    HHVM (HipHop Virtual Machine)
    Presto
    Presto
    Kotlin
    Kotlin
    Apache Thrift
    Apache Thrift

    Since the beginning, Cal Henderson has been the CTO of Slack. Earlier this year, he commented on a Quora question summarizing their current stack.

    Apps
    • Web: a mix of JavaScript/ES6 and React.
    • Desktop: And Electron to ship it as a desktop application.
    • Android: a mix of Java and Kotlin.
    • iOS: written in a mix of Objective C and Swift.
    Backend
    • The core application and the API written in PHP/Hack that runs on HHVM.
    • The data is stored in MySQL using Vitess.
    • Caching is done using Memcached and MCRouter.
    • The search service takes help from SolrCloud, with various Java services.
    • The messaging system uses WebSockets with many services in Java and Go.
    • Load balancing is done using HAproxy with Consul for configuration.
    • Most services talk to each other over gRPC,
    • Some Thrift and JSON-over-HTTP
    • Voice and video calling service was built in Elixir.
    Data warehouse
    • Built using open source tools including Presto, Spark, Airflow, Hadoop and Kafka.
    Etc
    See more
    Eric Colson
    Eric Colson
    Chief Algorithms Officer at Stitch Fix · | 19 upvotes · 624.4K views
    atStitch FixStitch Fix
    Kafka
    Kafka
    PostgreSQL
    PostgreSQL
    Amazon S3
    Amazon S3
    Apache Spark
    Apache Spark
    Presto
    Presto
    Python
    Python
    R Language
    R Language
    PyTorch
    PyTorch
    Docker
    Docker
    Amazon EC2 Container Service
    Amazon EC2 Container Service
    #AWS
    #Etl
    #ML
    #DataScience
    #DataStack
    #Data

    The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

    Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

    At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

    For more info:

    #DataScience #DataStack #Data

    See more
    Interest over time
    Reviews of Apache Flink and Apache Spark
    No reviews found
    How developers use Apache Flink and Apache Spark
    Avatar of Wei Chen
    Wei Chen uses Apache SparkApache Spark

    Spark is good at parallel data processing management. We wrote a neat program to handle the TBs data we get everyday.

    Avatar of Ralic Lo
    Ralic Lo uses Apache SparkApache Spark

    Used Spark Dataframe API on Spark-R for big data analysis.

    Avatar of Kalibrr
    Kalibrr uses Apache SparkApache Spark

    We use Apache Spark in computing our recommendations.

    Avatar of Dotmetrics
    Dotmetrics uses Apache SparkApache Spark

    Big data analytics and nightly transformation jobs.

    Avatar of brenoinojosa
    brenoinojosa uses Apache SparkApache Spark

    Data retrieval and analysis of Cassandra.

    Avatar of Coolfront Technologies
    Coolfront Technologies uses Apache FlinkApache Flink

    Used for analytics on streaming data.

    Avatar of rmetzger
    rmetzger uses Apache FlinkApache Flink

    Flink for stream data analytics

    How much does Apache Flink cost?
    How much does Apache Spark cost?
    Pricing unavailable
    Pricing unavailable
    News about Apache Flink
    More news
    News about Apache Spark
    More news