What is OpenResty and what are its top alternatives?
Top Alternatives to OpenResty
- WordPress
The core software is built by hundreds of community volunteers, and when you’re ready for more there are thousands of plugins and themes available to transform your site into almost anything you can imagine. Over 60 million people have chosen WordPress to power the place on the web they call “home” — we’d love you to join the family. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Node.js
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Kong
Kong is a scalable, open source API Layer (also known as an API Gateway, or API Middleware). Kong controls layer 4 and 7 traffic and is extended through Plugins, which provide extra functionality and services beyond the core platform. ...
- HAProxy
HAProxy (High Availability Proxy) is a free, very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. ...
- Apache HTTP Server
The Apache HTTP Server is a powerful and flexible HTTP/1.1 compliant web server. Originally designed as a replacement for the NCSA HTTP Server, it has grown to be the most popular web server on the Internet. ...
- Amazon EC2
It is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers. ...
OpenResty alternatives & related posts
WordPress
- Customizable416
- Easy to manage367
- Plugins & themes354
- Non-tech colleagues can update website content259
- Really powerful247
- Rapid website development145
- Best documentation78
- Codex51
- Product feature set44
- Custom/internal social network35
- Open source18
- Great for all types of websites8
- Huge install and user base7
- I like it like I like a kick in the groin5
- It's simple and easy to use by any novice5
- Perfect example of user collaboration5
- Open Source Community5
- Most websites make use of it5
- Best5
- API-based CMS4
- Community4
- Easy To use3
- <a href="https://secure.wphackedhel">Easy Beginner</a>2
- Hard to keep up-to-date if you customize things13
- Plugins are of mixed quality13
- Not best backend UI10
- Complex Organization2
- Do not cover all the basics in the core1
- Great Security1
related WordPress posts
I've heard that I have the ability to write well, at times. When it flows, it flows. I decided to start blogging in 2013 on Blogger. I started a company and joined BizPark with the Microsoft Azure allotment. I created a WordPress blog and did a migration at some point. A lot happened in the time after that migration but I stopped coding and changed cities during tumultuous times that taught me many lessons concerning mental health and productivity. I eventually graduated from BizSpark and outgrew the credit allotment. That killed the WordPress blog.
I blogged about writing again on the existing Blogger blog but it didn't feel right. I looked at a few options where I wouldn't have to worry about hosting cost indefinitely and Jekyll stood out with GitHub Pages. The Importer was fairly straightforward for the existing blog posts.
Todo * Set up redirects for all posts on blogger. The URI format is different so a complete redirect wouldn't work. Although, there may be something in Jekyll that could manage the redirects. I did notice the old URLs were stored in the front matter. I'm working on a command-line Ruby gem for the current plan. * I did find some of the lost WordPress posts on archive.org that I downloaded with the waybackmachinedownloader. I think I might write an importer for that. * I still have a few Disqus comment threads to map
hello guys, I need your help. I created a website, I've been using Elementor forever, but yesterday I bought a template after I made the purchase I knew I made a mistake, cause the template was in HTML, can anyone please show me how to put this HTML template in my WordPress so it will be the face of my website, thank you in advance.
Python
- Great libraries1.2K
- Readable code964
- Beautiful code847
- Rapid development788
- Large community691
- Open source438
- Elegant393
- Great community282
- Object oriented273
- Dynamic typing221
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn51
- Scientific computing46
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Very programmer and non-programmer friendly18
- Free18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- Import antigravity8
- It's lean and fun to code8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Rapid Prototyping6
- Readability counts6
- Now is better than never6
- Great for tooling6
- Flat is better than nested6
- Although practicality beats purity6
- I love snakes6
- High Documented language6
- There should be one-- and preferably only one --obvious6
- Fast coding and good for competitions6
- Web scraping5
- Lists, tuples, dictionaries5
- Great for analytics5
- Easy to setup and run smooth4
- Easy to learn and use4
- Plotting4
- Beautiful is better than ugly4
- Multiple Inheritence4
- Socially engaged community4
- Complex is better than complicated4
- CG industry needs4
- Simple and easy to learn4
- It is Very easy , simple and will you be love programmi3
- Flexible and easy3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- Powerful language for AI3
- Can understand easily who are new to programming2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Batteries included2
- Good for hacking2
- Securit2
- Procedural programming1
- Best friend for NLP1
- Slow1
- Automation friendly1
- Sexy af1
- Ni0
- Keep it simple0
- Powerful0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
Node.js
- Npm1.4K
- Javascript1.3K
- Great libraries1.1K
- High-performance1K
- Open source805
- Great for apis487
- Asynchronous477
- Great community425
- Great for realtime apps390
- Great for command line utilities296
- Websockets86
- Node Modules84
- Uber Simple69
- Great modularity59
- Allows us to reuse code in the frontend58
- Easy to start42
- Great for Data Streaming35
- Realtime32
- Awesome28
- Non blocking IO25
- Can be used as a proxy18
- High performance, open source, scalable17
- Non-blocking and modular16
- Easy and Fun15
- Easy and powerful14
- Future of BackEnd13
- Same lang as AngularJS13
- Fullstack12
- Fast11
- Scalability10
- Cross platform10
- Simple9
- Mean Stack8
- Great for webapps7
- Easy concurrency7
- Typescript6
- Fast, simple code and async6
- React6
- Friendly6
- Control everything5
- Its amazingly fast and scalable5
- Easy to use and fast and goes well with JSONdb's5
- Scalable5
- Great speed5
- Fast development5
- It's fast4
- Easy to use4
- Isomorphic coolness4
- Great community3
- Not Python3
- Sooper easy for the Backend connectivity3
- TypeScript Support3
- Blazing fast3
- Performant and fast prototyping3
- Easy to learn3
- Easy3
- Scales, fast, simple, great community, npm, express3
- One language, end-to-end3
- Less boilerplate code3
- Npm i ape-updating2
- Event Driven2
- Lovely2
- Creat for apis1
- Node0
- Bound to a single CPU46
- New framework every day45
- Lots of terrible examples on the internet40
- Asynchronous programming is the worst33
- Callback24
- Javascript19
- Dependency hell11
- Dependency based on GitHub11
- Low computational power10
- Very very Slow7
- Can block whole server easily7
- Callback functions may not fire on expected sequence7
- Breaking updates4
- Unstable4
- Unneeded over complication3
- No standard approach3
- Bad transitive dependency management1
- Can't read server session1
related Node.js posts
I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery
For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:
Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have
GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.
MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website
Needs advice on code coverage tool in Node.js/ExpressJS with External API Testing Framework
Hello community,
I have a web application with the backend developed using Node.js and Express.js. The backend server is in one directory, and I have a separate API testing framework, made using SuperTest, Mocha, and Chai, in another directory. The testing framework pings the API, retrieves responses, and performs validations.
I'm currently looking for a code coverage tool that can accurately measure the code coverage of my backend code when triggered by the API testing framework. I've tried using Istanbul and NYC with instrumented code, but the results are not as expected.
Could you please recommend a reliable code coverage tool or suggest an approach to effectively measure the code coverage of my Node.js/Express.js backend code in this setup?
NGINX
- High-performance http server1.4K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- Supports http/27
- The best of them7
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
- Easy to maintain37
- Easy to install32
- Flexible26
- Great performance21
- Api blueprint7
- Custom Plugins4
- Kubernetes-native3
- Security2
- Has a good plugin infrastructure2
- Agnostic2
- Load balancing1
- Documentation is clear1
- Very customizable1
related Kong posts
We needed a lightweight and completely customizable #microservices #gateway to be able to generate #JWT and introspect #OAuth2 tokens as well. The #gateway was going to front all #APIs for our single page web app as well as externalized #APIs for our partners.
ContendersWe looked at Tyk Cloud and Kong. Kong's plugins are all Lua based and its core is NGINX and OpenResty. Although it's open source, it's not the greatest platform to be able to customize. On top of that enterprise features are paid and expensive. Tyk is Go and the nomenclature used within Tyk like "sessions" was bizarre, and again enterprise features were paid.
DecisionWe ultimately decided to roll our own using ExpressJS into Express Gateway because the use case for using ExpressJS as an #API #gateway was tried and true, in fact - all the enterprise features that the other two charge for #OAuth2 introspection etc were freely available within ExpressJS middleware.
OutcomeWe opened source Express Gateway with a core set of plugins and the community started writing their own and could quickly do so by rolling lots of ExpressJS middleware into Express Gateway
- Load balancer132
- High performance102
- Very fast69
- Proxying for tcp and http58
- SSL termination55
- Open source31
- Reliable27
- Free20
- Well-Documented18
- Very popular12
- Runs health checks on backends7
- Suited for very high traffic web sites7
- Scalable6
- Ready to Docker5
- Powers many world's most visited sites4
- Simple3
- Ssl offloading2
- Work with NTLM2
- Available as a plugin for OPNsense1
- Redis1
- Becomes your single point of failure6
related HAProxy posts
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
We're using Git through GitHub for public repositories and GitLab for our private repositories due to its easy to use features. Docker and Kubernetes are a must have for our highly scalable infrastructure complimented by HAProxy with Varnish in front of it. We are using a lot of npm and Visual Studio Code in our development sessions.
Apache HTTP Server
- Web server479
- Most widely-used web server305
- Virtual hosting217
- Fast148
- Ssl support138
- Since 199644
- Asynchronous28
- Robust5
- Proven over many years4
- Mature2
- Perfomance2
- Perfect Support1
- Many available modules0
- Many available modules0
- Hard to set up4
related Apache HTTP Server posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been happy with nginx as part of our stack. As an open source web application that folks install on-premise, the configuration system for the webserver is pretty important to us. I have a few complaints (e.g. the configuration syntax for conditionals is a pain), but overall we've found it pretty easy to build a configurable set of options (see link) for how to run Zulip on nginx, both directly and with a remote reverse proxy in front of it, with a minimum of code duplication.
Certainly I've been a lot happier with it than I was working with Apache HTTP Server in past projects.
- Quick and reliable cloud servers647
- Scalability515
- Easy management393
- Low cost277
- Auto-scaling271
- Market leader89
- Backed by amazon80
- Reliable79
- Free tier67
- Easy management, scalability58
- Flexible13
- Easy to Start10
- Widely used9
- Web-scale9
- Elastic9
- Node.js API7
- Industry Standard5
- Lots of configuration options4
- GPU instances2
- Simpler to understand and learn1
- Extremely simple to use1
- Amazing for individuals1
- All the Open Source CLI tools you could want.1
- Ui could use a lot of work14
- High learning curve when compared to PaaS6
- Extremely poor CPU performance3
related Amazon EC2 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.