StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Performance Monitoring
  4. Performance Monitoring
  5. Datadog vs Grafana

Datadog vs Grafana

OverviewDecisionsComparisonAlternatives

Overview

Datadog
Datadog
Stacks9.8K
Followers8.2K
Votes861
Grafana
Grafana
Stacks18.4K
Followers14.6K
Votes415
GitHub Stars70.7K
Forks13.1K

Datadog vs Grafana: What are the differences?

Key Differences between Datadog and Grafana

Datadog and Grafana are two popular monitoring and observability tools used in the IT industry. While both tools offer similar functionalities, there are key differences that set them apart from each other.

  1. Data Visualization: Datadog is primarily focused on data visualization and provides a wide range of pre-built visualizations and dashboards. It offers an intuitive and user-friendly interface to create and customize visualizations without the need for complex coding. On the other hand, Grafana is more flexible and allows users to create highly customizable dashboards with the ability to integrate data from various sources. It provides a wide range of visualization options and gives users greater control over the appearance and behavior of their visualizations.

  2. Data Sources: Datadog is designed to seamlessly integrate with various cloud platforms and services, making it the ideal choice for monitoring cloud-based infrastructures. It offers native integrations with popular cloud providers such as AWS, Google Cloud, and Azure. Grafana, on the other hand, supports a wide range of data sources including databases, APIs, and time series databases like Prometheus and InfluxDB. This flexibility allows Grafana to be used in a variety of environments, both cloud-based and on-premises.

  3. Alerting Capabilities: Both Datadog and Grafana offer alerting capabilities, but there are some key differences. Datadog provides an advanced alerting engine that allows users to define complex conditions and thresholds for triggering alerts based on their specific requirements. It also offers alert deduplication and suppression to prevent unnecessary notifications. Grafana, on the other hand, has a simpler alerting system that requires users to define alert rules using the PromQL query language. While Grafana's alerting capabilities are not as robust as Datadog's, it can be extended using third-party plugins.

  4. Community and Ecosystem: Grafana has a strong and vibrant community with active contributors, which has resulted in a wide range of plugins and extensions being available. This means that users can easily extend and enhance the functionality of Grafana to meet their specific needs. Datadog also has a growing community and ecosystem, but it may not have the same level of community-driven plugins and extensions as Grafana.

  5. Pricing Model: Datadog follows a subscription-based pricing model, where the cost is based on the number of hosts or resources being monitored. This can make it expensive for organizations with a large number of resources. On the other hand, Grafana is open source and free to use, which can be more cost-effective for organizations on a tight budget. However, it's worth noting that Grafana Labs, the company behind Grafana, offers additional enterprise features and support that come with a cost.

  6. Ease of Deployment: Datadog offers a fully managed solution and provides easy deployment options on various cloud platforms. It requires minimal setup and configuration, making it quick to get started. Grafana, on the other hand, requires more manual setup and configuration, especially if you want to integrate it with data sources like Prometheus or InfluxDB. While this may require more technical expertise, it also gives users greater control and flexibility over their monitoring setup.

In summary, Datadog and Grafana have their own strengths and weaknesses. Datadog is focused on data visualization and provides native integrations with cloud platforms, while Grafana offers more customization options and supports a wide range of data sources. The choice between the two depends on the specific requirements and preferences of the organization.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Datadog, Grafana

Leonardo Henrique da
Leonardo Henrique da

Pleno QA Enginneer at SolarMarket

Dec 8, 2020

Decided

The objective of this work was to develop a system to monitor the materials of a production line using IoT technology. Currently, the process of monitoring and replacing parts depends on manual services. For this, load cells, microcontroller, Broker MQTT, Telegraf, InfluxDB, and Grafana were used. It was implemented in a workflow that had the function of collecting sensor data, storing it in a database, and visualizing it in the form of weight and quantity. With these developed solutions, he hopes to contribute to the logistics area, in the replacement and control of materials.

402k views402k
Comments
Farzeem Diamond
Farzeem Diamond

Software Engineer at IVP

Jul 21, 2020

Needs adviceonDatadogDatadogDynatraceDynatraceAppDynamicsAppDynamics

Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.

Current Environment: .NET Core Web app hosted on Microsoft IIS

Future Environment: Web app will be hosted on Microsoft Azure

Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server

Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.

Please advise on the above. Thanks!

1.59M views1.59M
Comments
Medeti
Medeti

Jun 27, 2020

Needs adviceonAmazon EKSAmazon EKSKubernetesKubernetesAWS Elastic Load Balancing (ELB)AWS Elastic Load Balancing (ELB)

We are looking for a centralised monitoring solution for our application deployed on Amazon EKS. We would like to monitor using metrics from Kubernetes, AWS services (NeptuneDB, AWS Elastic Load Balancing (ELB), Amazon EBS, Amazon S3, etc) and application microservice's custom metrics.

We are expected to use around 80 microservices (not replicas). I think a total of 200-250 microservices will be there in the system with 10-12 slave nodes.

We tried Prometheus but it looks like maintenance is a big issue. We need to manage scaling, maintaining the storage, and dealing with multiple exporters and Grafana. I felt this itself needs few dedicated resources (at least 2-3 people) to manage. Not sure if I am thinking in the correct direction. Please confirm.

You mentioned Datadog and Sysdig charges per host. Does it charge per slave node?

1.51M views1.51M
Comments

Detailed Comparison

Datadog
Datadog
Grafana
Grafana

Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog!

Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins.

14-day Free Trial for an unlimited number of hosts;200+ turn-key integrations for data aggregation;Clean graphs of StatsD and other integrations;Slice and dice graphs and alerts by tags, roles, and more;Easy-to-use search for hosts, metrics, and tags;Alert notifications via e-mail and PagerDuty;Receive alerts on any metric, for a single host or an entire cluster;Full API access in more than 15 languages;Overlay metrics and events across disparate sources;Out-of-the-box and customizable monitoring dashboards;Easy way to compute rates, ratios, averages, or integrals;Sampling intervals of 10 seconds;Mute all alerts with 1 click during upgrades and maintenance;Tools for team collaboration
Create, edit, save & search dashboards;Change column spans and row heights;Drag and drop panels to rearrange;Use InfluxDB or Elasticsearch as dashboard storage;Import & export dashboard (json file);Import dashboard from Graphite;Templating
Statistics
GitHub Stars
-
GitHub Stars
70.7K
GitHub Forks
-
GitHub Forks
13.1K
Stacks
9.8K
Stacks
18.4K
Followers
8.2K
Followers
14.6K
Votes
861
Votes
415
Pros & Cons
Pros
  • 140
    Monitoring for many apps (databases, web servers, etc)
  • 107
    Easy setup
  • 87
    Powerful ui
  • 84
    Powerful integrations
  • 70
    Great value
Cons
  • 20
    Expensive
  • 4
    No errors exception tracking
  • 2
    External Network Goes Down You Wont Be Logging
  • 1
    Complicated
Pros
  • 89
    Beautiful
  • 68
    Graphs are interactive
  • 57
    Free
  • 56
    Easy
  • 34
    Nicer than the Graphite web interface
Cons
  • 1
    No interactive query builder
Integrations
NGINX
NGINX
Google App Engine
Google App Engine
Apache HTTP Server
Apache HTTP Server
Java
Java
Docker
Docker
Pingdom
Pingdom
MySQL
MySQL
Ruby
Ruby
Python
Python
Memcached
Memcached
Graphite
Graphite
InfluxDB
InfluxDB

What are some alternatives to Datadog, Grafana?

New Relic

New Relic

The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too.

Kibana

Kibana

Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Prometheus

Prometheus

Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.

Raygun

Raygun

Raygun gives you a window into how users are really experiencing your software applications. Detect, diagnose and resolve issues that are affecting end users with greater speed and accuracy.

Nagios

Nagios

Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License.

AppSignal

AppSignal

AppSignal gives you and your team alerts and detailed metrics about your Ruby, Node.js or Elixir application. Sensible pricing, no aggressive sales & support by developers.

Netdata

Netdata

Netdata collects metrics per second & presents them in low-latency dashboards. It's designed to run on all of your physical & virtual servers, cloud deployments, Kubernetes clusters & edge/IoT devices, to monitor systems, containers & apps

AppDynamics

AppDynamics

AppDynamics develops application performance management (APM) solutions that deliver problem resolution for highly distributed applications through transaction flow monitoring and deep diagnostics.

Zabbix

Zabbix

Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics.

Sensu

Sensu

Sensu is the future-proof solution for multi-cloud monitoring at scale. The Sensu monitoring event pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their multi-cloud environments.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana