StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Continuous Deployment
  4. Server Configuration And Automation
  5. Docker Compose vs Terraform

Docker Compose vs Terraform

OverviewDecisionsComparisonAlternatives

Overview

Terraform
Terraform
Stacks22.9K
Followers14.7K
Votes344
GitHub Stars47.0K
Forks10.1K
Docker Compose
Docker Compose
Stacks22.3K
Followers16.5K
Votes501
GitHub Stars36.4K
Forks5.5K

Docker Compose vs Terraform: What are the differences?

Docker Compose and Terraform are two popular tools used in the field of DevOps and infrastructure management. Let's explore the key differences between them.

  1. Ease of Use: Docker Compose is primarily used for managing and deploying Docker containers, providing a simple way to define and run multi-container applications. It focuses on managing containers and the services they provide. On the other hand, Terraform is a more comprehensive infrastructure provisioning tool that allows users to automate the setup and configuration of various cloud services and resources. It is used to manage infrastructure as code and handle the entire lifecycle of resources.

  2. Scope: Docker Compose has a narrower scope compared to Terraform. It primarily focuses on simplifying the deployment and management of containers within a single host system or cluster. It provides an easy way to define and link multiple containers within a single application. In contrast, Terraform has a broader scope and can be used to define and manage infrastructure resources across multiple cloud providers and services.

  3. Infrastructure Provisioning: Docker Compose does not have built-in capabilities for provisioning infrastructure resources. It primarily focuses on containerization and application deployment aspects. Terraform, on the other hand, specializes in infrastructure provisioning and configuration management. It allows users to define and manage cloud resources such as virtual machines, storage, networking, and more.

  4. Declarative vs Imperative: Docker Compose follows a declarative approach where users define the desired state of the application and let Docker Compose handle the provisioning and orchestration automatically. In contrast, Terraform follows an imperative approach, allowing users to explicitly define the steps and actions required to provision and configure resources.

  5. Resource Type Support: Docker Compose primarily focuses on managing containers and their interconnections, providing functionality for services, networks, and volumes. It has limited support for other resource types. In comparison, Terraform supports a wide range of resource types across various cloud providers, including virtual machines, databases, serverless functions, DNS records, and more. This makes Terraform more suitable for managing complex infrastructure setups.

  6. Community and Ecosystem: Docker Compose has a large and active community, primarily focused on containerization and application deployment. It benefits from the vast Docker ecosystem and integration with other Docker tools. Terraform also has a thriving community but is more diverse in terms of use cases since it can manage resources beyond containers. It integrates with various cloud providers and has a wide range of community-maintained provider plugins.

In summary, Docker Compose is a tool dedicated to managing and deploying containers, with a focus on simplicity and easy orchestration within a single host or cluster. On the other hand, Terraform is a comprehensive infrastructure provisioning tool that allows users to automate the setup of various cloud resources across multiple providers, going beyond containerization.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Terraform, Docker Compose

Sung Won
Sung Won

Nov 4, 2019

DecidedonGoogle Cloud IoT CoreGoogle Cloud IoT CoreTerraformTerraformPythonPython

Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

Check Out My Architecture: CLICK ME

Check out the GitHub repo attached

2.25M views2.25M
Comments
Timothy
Timothy

SRE

Mar 20, 2020

Decided

I personally am not a huge fan of vendor lock in for multiple reasons:

  • I've seen cost saving moves to the cloud end up costing a fortune and trapping companies due to over utilization of cloud specific features.
  • I've seen S3 failures nearly take down half the internet.
  • I've seen companies get stuck in the cloud because they aren't built cloud agnostic.

I choose to use terraform for my cloud provisioning for these reasons:

  • It's cloud agnostic so I can use it no matter where I am.
  • It isn't difficult to use and uses a relatively easy to read language.
  • It tests infrastructure before running it, and enables me to see and keep changes up to date.
  • It runs from the same CLI I do most of my CM work from.
385k views385k
Comments
Daniel
Daniel

May 4, 2020

Decided

Because Pulumi uses real programming languages, you can actually write abstractions for your infrastructure code, which is incredibly empowering. You still 'describe' your desired state, but by having a programming language at your fingers, you can factor out patterns, and package it up for easier consumption.

426k views426k
Comments

Detailed Comparison

Terraform
Terraform
Docker Compose
Docker Compose

With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel.

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Infrastructure as Code: Infrastructure is described using a high-level configuration syntax. This allows a blueprint of your datacenter to be versioned and treated as you would any other code. Additionally, infrastructure can be shared and re-used.;Execution Plans: Terraform has a "planning" step where it generates an execution plan. The execution plan shows what Terraform will do when you call apply. This lets you avoid any surprises when Terraform manipulates infrastructure.;Resource Graph: Terraform builds a graph of all your resources, and parallelizes the creation and modification of any non-dependent resources. Because of this, Terraform builds infrastructure as efficiently as possible, and operators get insight into dependencies in their infrastructure.;Change Automation: Complex changesets can be applied to your infrastructure with minimal human interaction. With the previously mentioned execution plan and resource graph, you know exactly what Terraform will change and in what order, avoiding many possible human errors
-
Statistics
GitHub Stars
47.0K
GitHub Stars
36.4K
GitHub Forks
10.1K
GitHub Forks
5.5K
Stacks
22.9K
Stacks
22.3K
Followers
14.7K
Followers
16.5K
Votes
344
Votes
501
Pros & Cons
Pros
  • 121
    Infrastructure as code
  • 73
    Declarative syntax
  • 45
    Planning
  • 28
    Simple
  • 24
    Parallelism
Cons
  • 1
    Doesn't have full support to GKE
Pros
  • 123
    Multi-container descriptor
  • 110
    Fast development environment setup
  • 79
    Easy linking of containers
  • 68
    Simple yaml configuration
  • 60
    Easy setup
Cons
  • 9
    Tied to single machine
  • 5
    Still very volatile, changing syntax often
Integrations
Heroku
Heroku
Amazon EC2
Amazon EC2
CloudFlare
CloudFlare
DNSimple
DNSimple
Microsoft Azure
Microsoft Azure
Consul
Consul
Equinix Metal
Equinix Metal
DigitalOcean
DigitalOcean
OpenStack
OpenStack
Google Compute Engine
Google Compute Engine
Docker
Docker

What are some alternatives to Terraform, Docker Compose?

Ansible

Ansible

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use.

Kubernetes

Kubernetes

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Chef

Chef

Chef enables you to manage and scale cloud infrastructure with no downtime or interruptions. Freely move applications and configurations from one cloud to another. Chef is integrated with all major cloud providers including Amazon EC2, VMWare, IBM Smartcloud, Rackspace, OpenStack, Windows Azure, HP Cloud, Google Compute Engine, Joyent Cloud and others.

Docker Swarm

Docker Swarm

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Capistrano

Capistrano

Capistrano is a remote server automation tool. It supports the scripting and execution of arbitrary tasks, and includes a set of sane-default deployment workflows.

Puppet Labs

Puppet Labs

Puppet is an automated administrative engine for your Linux, Unix, and Windows systems and performs administrative tasks (such as adding users, installing packages, and updating server configurations) based on a centralized specification.

Salt

Salt

Salt is a new approach to infrastructure management. Easy enough to get running in minutes, scalable enough to manage tens of thousands of servers, and fast enough to communicate with them in seconds. Salt delivers a dynamic communication bus for infrastructures that can be used for orchestration, remote execution, configuration management and much more.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana