StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Continuous Deployment
  4. Server Configuration And Automation
  5. Ansible vs Kubernetes

Ansible vs Kubernetes

OverviewDecisionsComparisonAlternatives

Overview

Ansible
Ansible
Stacks19.5K
Followers15.6K
Votes1.3K
GitHub Stars66.9K
Forks24.1K
Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685

Ansible vs Kubernetes: What are the differences?

Key Differences between Ansible and Kubernetes

Ansible and Kubernetes are both popular tools in the DevOps world. While they can both be used to manage IT infrastructure, they have significant differences in terms of their approach and functionality.

  1. Configuration Management vs Container Orchestration: Ansible is primarily a configuration management tool that focuses on automating the setup and maintenance of IT infrastructure. It uses declarative YAML files to define the desired state of the infrastructure and executes tasks on remote hosts to achieve that state. On the other hand, Kubernetes is a container orchestration platform that automates the deployment, scaling, and management of containerized applications. It focuses on managing containers and their associated resources in a scalable and efficient manner.

  2. Agentless vs Agent-based Architecture: Ansible follows an agentless architecture, which means it doesn't require any software to be installed on the target hosts. It uses SSH or WinRM protocols to connect to remote machines and execute tasks. In contrast, Kubernetes follows an agent-based architecture where the Kubernetes agent, known as kubelet, needs to be installed on each host in the cluster. The kubelet communicates with the Kubernetes master to manage containerized applications.

  3. Procedural vs Declarative Approach: Ansible employs a procedural approach where tasks are executed in a predefined sequence. Playbooks are written in a procedural manner, specifying detailed steps to achieve a desired state. Kubernetes, on the other hand, follows a declarative approach. Desired state is defined in YAML manifests, and Kubernetes then ensures that the actual state matches the desired state, taking care of the necessary actions automatically.

  4. Infrastructure vs Application-centric focus: Ansible is primarily focused on managing infrastructure components such as servers, networks, and storage. It can be used to automate tasks like provisioning servers, configuring networking, and managing software installations. Kubernetes, on the other hand, is more application-centric and focuses on managing containerized applications. It provides features like service discovery, load balancing, and automatic scaling to ensure efficient running of applications.

  5. Multi-node Orchestration vs Single-node Orchestration: Ansible excels at orchestrating tasks across multiple nodes in a distributed environment. It can execute tasks simultaneously on multiple hosts, coordinating their actions. In contrast, Kubernetes is primarily designed for orchestrating containerized applications within a single cluster of nodes. It manages the lifecycle of containers, scheduling them on appropriate nodes and ensuring their high availability.

  6. Community vs Vendor Support: Ansible is an open-source tool with a large and active community. It has a wide range of community-contributed modules and roles, providing extensive support for various infrastructure components and services. Kubernetes, although open-source, is backed by major vendors like Google, Microsoft, and Red Hat. It has a strong backing and a rich ecosystem of tools and extensions provided by these vendors.

In summary, Ansible is a configuration management tool with an agentless and procedural approach, primarily focused on managing IT infrastructure, while Kubernetes is a container orchestration platform with an agent-based and declarative approach, primarily focused on managing containerized applications within a single cluster.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Ansible, Kubernetes

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Anis
Anis

Founder at Odix

Nov 7, 2020

Review

I recommend this : -Spring reactive for back end : the fact it's reactive (async) it consumes half of the resources that a sync platform needs (so less CPU -> less money). -Angular : Web Front end ; it's gives you the possibility to use PWA which is a cheap replacement for a mobile app (but more less popular). -Docker images. -Kubernetes to orchestrate all the containers. -I Use Jenkins / blueocean, ansible for my CI/CD (with Github of course) -AWS of course : u can run a K8S cluster there, make it multi AZ (availability zones) to be highly available, use a load balancer and an auto scaler and ur good to go. -You can store data by taking any managed DB or u can deploy ur own (cheap but risky).

You pay less money, but u need some technical 2 - 3 guys to make that done.

Good luck

115k views115k
Comments
Michael
Michael

CEO at asencis Ltd

Jan 5, 2021

Needs advice

We develop rapidly with docker-compose orchestrated services, however, for production - we utilise the very best ideas that Kubernetes has to offer: SCALE! We can scale when needed, setting a maximum and minimum level of nodes for each application layer - scaling only when the load balancer needs it. This allowed us to reduce our devops costs by 40% whilst also maintaining an SLA of 99.87%.

272k views272k
Comments

Detailed Comparison

Ansible
Ansible
Kubernetes
Kubernetes

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use.

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

Ansible's natural automation language allows sysadmins, developers, and IT managers to complete automation projects in hours, not weeks.;Ansible uses SSH by default instead of requiring agents everywhere. Avoid extra open ports, improve security, eliminate "managing the management", and reclaim CPU cycles.;Ansible automates app deployment, configuration management, workflow orchestration, and even cloud provisioning all from one system.
Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
Statistics
GitHub Stars
66.9K
GitHub Stars
-
GitHub Forks
24.1K
GitHub Forks
-
Stacks
19.5K
Stacks
61.2K
Followers
15.6K
Followers
52.8K
Votes
1.3K
Votes
685
Pros & Cons
Pros
  • 284
    Agentless
  • 210
    Great configuration
  • 199
    Simple
  • 176
    Powerful
  • 155
    Easy to learn
Cons
  • 8
    Dangerous
  • 5
    Hard to install
  • 3
    Backward compatibility
  • 3
    Bloated
  • 3
    Doesn't Run on Windows
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Integrations
Nexmo
Nexmo
Stackdriver
Stackdriver
VMware vSphere
VMware vSphere
Docker
Docker
OpenStack
OpenStack
Amazon EC2
Amazon EC2
Rackspace Cloud Servers
Rackspace Cloud Servers
Google Compute Engine
Google Compute Engine
New Relic
New Relic
PagerDuty
PagerDuty
Vagrant
Vagrant
Docker
Docker
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Google Kubernetes Engine
Google Kubernetes Engine

What are some alternatives to Ansible, Kubernetes?

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Chef

Chef

Chef enables you to manage and scale cloud infrastructure with no downtime or interruptions. Freely move applications and configurations from one cloud to another. Chef is integrated with all major cloud providers including Amazon EC2, VMWare, IBM Smartcloud, Rackspace, OpenStack, Windows Azure, HP Cloud, Google Compute Engine, Joyent Cloud and others.

Terraform

Terraform

With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel.

Docker Swarm

Docker Swarm

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Capistrano

Capistrano

Capistrano is a remote server automation tool. It supports the scripting and execution of arbitrary tasks, and includes a set of sane-default deployment workflows.

Puppet Labs

Puppet Labs

Puppet is an automated administrative engine for your Linux, Unix, and Windows systems and performs administrative tasks (such as adding users, installing packages, and updating server configurations) based on a centralized specification.

Salt

Salt

Salt is a new approach to infrastructure management. Easy enough to get running in minutes, scalable enough to manage tens of thousands of servers, and fast enough to communicate with them in seconds. Salt delivers a dynamic communication bus for infrastructures that can be used for orchestration, remote execution, configuration management and much more.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana