Need advice about which tool to choose?Ask the StackShare community!
MySQL vs RabbitMQ: What are the differences?
Introduction
In this article, we will discuss the key differences between MySQL and RabbitMQ. Both MySQL and RabbitMQ are widely used technologies in the field of data management, but there are several important distinctions between them.
Scalability: One of the primary differences between MySQL and RabbitMQ lies in their scalability capabilities. MySQL is a relational database management system (RDBMS) that can handle a large amount of structured data and is suitable for applications that require complex querying and support for ACID (Atomicity, Consistency, Isolation, Durability) properties. On the other hand, RabbitMQ is a message broker that focuses on facilitating asynchronous communication between different systems or components. It excels at handling high volumes of messages and supporting near real-time data transfer between distributed systems.
Data Storage: MySQL stores data in a structured manner using tables, columns, and rows, adhering to a predefined schema. It relies on the Structured Query Language (SQL) for data manipulation. In contrast, RabbitMQ does not store data persistently like a traditional database. It acts as an intermediary for exchanging messages between different systems, ensuring reliable and orderly communication between them.
Data Structure: MySQL uses a fixed data schema, meaning the structure of the data must be defined before any data is stored. It enforces a predefined structure for tables and columns, ensuring data consistency and integrity. On the other hand, RabbitMQ is more flexible in terms of data structure. It allows for dynamic data exchange in the form of messages, where the structure and format of the data can vary based on the specific requirements of the systems involved.
Data Interactions: MySQL primarily supports synchronized interactions between clients and the database server, where the client sends a query, and the server responds with the requested data or an error message. RabbitMQ, on the other hand, supports asynchronous or event-driven interactions. Clients can send messages to a queue, and the receiver can consume those messages at its own pace, enabling decoupled and efficient communication between systems.
Processing Paradigm: MySQL follows a traditional transactional processing model, where each query is executed sequentially and conforms to the ACID properties. It ensures data consistency and integrity but may have an impact on performance and scalability in certain scenarios. RabbitMQ, being a message broker, follows a publish-subscribe or message queue processing model. It allows for parallel processing and distribution of messages across multiple consumers or systems, enhancing scalability and performance in distributed environments.
Use Cases: MySQL is commonly employed in applications that require persistence, structured data storage, and complex querying capabilities. It is well-suited for cases such as e-commerce platforms, content management systems, and data-driven applications. On the other hand, RabbitMQ finds its application in asynchronous communication scenarios, where systems need to exchange messages in a reliable, decoupled, and scalable manner. It is often used in microservices architectures, task queues, and event-driven systems.
In summary, MySQL is a robust relational database management system that excels at structured data storage and complex querying, while RabbitMQ is a versatile message broker that facilitates asynchronous and scalable communication between systems. Their differences lie in areas such as scalability, data storage, data structure, data interactions, processing paradigm, and usage scenarios.
I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.
To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?
You can easily start with SQlite. Really easy to startup since it doesn't require you to install any additional software since is self-contained. It has interfaces in almost any language and also GUIs. Start learning SQL basics and simpler data models and structures. There are many tutorials, also available in the official website. From there you will easily migrate to another database. MySQL could be next, sonce it's easier to learn at first and has more resources available. PostgreSQL is less widespread, more challenging and has the fewer resorces, but once you have some experience with MySQL is really easy to learn as well. All these technologies are really widespread and used accross the industry so you won't make a wrong decision with any of these.
A question you might want to think about is "What kind of experience do I want to gain, by using a DBMS?". If your aim is to have experience with SQL and any related libraries and frameworks for your language of choice (python, I think?), then it kind of doesn't matter too much which you pick so much. As others have said, SQLite would offer you the ability to very easily get started, and would give you a reasonably standard (if a little basic) SQL dialect to work with.
If your aim is actually to have a bit of "operational" experience, in terms of things like what command line tools might be available as standard for the DBMS, understanding how the DBMS handles multiple databases, when to use multiple schemas vs multiple databases, some basic privilege management etc. Then I would recommend PostgreSQL. SQLite's simplicity actually avoids most of these experiences, which is not helpful to you if that is what you hope to learn. MySQL has a few "quirks" to how it manages things like multiple databases, which may lead you to making less good decisions if you tried to take your experience over to different DBMS, especially in bigger enterprise roles. PostgreSQL is kind of a happy middle ground here, with the ability to start PostgreSQL servers via docker or docker-compose making the actual day-to-day management pretty easy, while still giving you experience of the kinds of considerations I have listed above.
At Vital Beats we make use of PostgreSQL, largely because it offers us a happy balance between good management and backup of data, and good standard command line tools, which is essential for us where we are deploying our solutions within Kubernetes / docker, and so more graphical tools are not always appropriate for us. PostgreSQL is also pretty universally supported in terms of language libraries and frameworks, without having to make compromises on how we want to store and layout our data.
MySQL's very popular, easy to install, is also available as a managed service across most popular cloud offerings. The support/default tooling (such as MySQL Query Workbench) certainly is a little more baked than what you'll find for Postgres.
Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.
Hello, i highly recommend Apache Kafka, to me it's the best. You can deploy it in cluster mode inside K8S, thus you can have a Highly available system (also auto scalable).
Good luck
I am just a beginner at these two technologies.
Problem statement: I am getting lakh of users from the sequel server for whom I need to create caches in MongoDB by making different REST API requests.
Here these users can be treated as messages. Each REST API request is a task.
I am confused about whether I should go for RabbitMQ alone or Celery.
If I have to go with RabbitMQ, I prefer to use python with Pika module. But the challenge with Pika is, it is not thread-safe. So I am not finding a way to execute a lakh of API requests in parallel using multiple threads using Pika.
If I have to go with Celery, I don't know how I can achieve better scalability in executing these API requests in parallel.
For large amounts of small tasks and caches I have had good luck with Redis and RQ. I have not personally used celery but I am fairly sure it would scale well, and I have not used RabbitMQ for anything besides communication between services. If you prefer python my suggestions should feel comfortable.
Sorry I do not have a more information
Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)
Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?
Thank you for your time
ZeroMQ is fast but you need to build build reliability yourself. There are a number of patterns described in the zeromq guide. I have used RabbitMQ before which gives lot of functionality out of the box, you can probably use the worker queues
example from the tutorial, it can also persists messages in the queue.
I haven't used Amazon SQS before. Another tool you could use is Kafka.
Both would do the trick, but there are some nuances. We work with both.
From the sound of it, your main focus is "not losing messages". In that case, I would go with RabbitMQ with a high availability policy (ha-mode=all) and a main/retry/error queue pattern.
Push messages to an exchange, which sends them to the main queue. If an error occurs, push the errored out message to the retry exchange, which forwards it to the retry queue. Give the retry queue a x-message-ttl and set the main exchange as a dead-letter-exchange. If your message has been retried several times, push it to the error exchange, where the message can remain until someone has time to look at it.
This is a very useful and resilient pattern that allows you to never lose messages. With the high availability policy, you make sure that if one of your rabbitmq nodes dies, another can take over and messages are already mirrored to it.
This is not really possible with SQS, because SQS is a lot more focused on throughput and scaling. Combined with SNS it can do interesting things like deduplication of messages and such. That said, one thing core to its design is that messages have a maximum retention time. The idea is that a message that has stayed in an SQS queue for a while serves no more purpose after a while, so it gets removed - so as to not block up any listener resources for a long time. You can also set up a DLQ here, but these similarly do not hold onto messages forever. Since you seem to depend on messages surviving at all cost, I would suggest that the scaling/throughput benefit of SQS does not outweigh the difference in approach to messages there.
Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?
We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).
Thank you very much in advance :)
There are many different messaging frameworks available for IPC use. It's not really a question of how "new" the technology is, but what you need it to do. Azure Service Bus can be a great service to use, but it can also take a lot of effort to administrate and maintain that can make it costly to use unless you need the more advanced features it offers for routing, sequencing, delivery, etc. I would recommend checking out this link to get a basic idea of different messaging architectures. These only cover Azure services, but there are many other solutions that use similar architectural models.
https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services
Hello, I am developing a new project with an internal chat between users. Also, there are complex relationships between the other project entities but I wolud like to build something scalable and fast and right now I am designing the data model. What kind of database would you recommend me to manage all application data? relational like MySQL, no relational like MongoDB or a mixed one? Thank you
In MongoDB, a write operation is atomic on the level of a single document, so it's harder to deal with consistency without transactions.
If you are trying with "complex relationships", give a chance to learn ArangoDB and Graph databases. Its database structures allow doing this with faster and simpler queries. The database is not as strict as others and allows arbitrary data. The data model is really like a neural network and you will never need foreign keys tables anymore. In Udemy there is a free course about it to get started.
MongoDB supports horizontal scaling through Sharding , distributing data across several machines and facilitating high throughput operations with large sets of data. ... Sharding allows you to add additional instances to increase capacity when required
The most important question is where are you planning to host? On-premise, or in the cloud.
Particularly if you are planning to host in either AWS or Azure, then your first point of call should be the PaaS (Platform as a Service) databases supplied by these vendors, as you will find yourself requiring a lot less effort to support them, much easier Disaster Recovery options, and also, depending on how PAYG the database is that you use, potentially also much cheaper costs than having a dedicated database server.
Your question regards 'Relational or not' is obviously key, and you need to consider both your required data structure, as well as the ACID requirements of your application model, as well as the non-functional requirements in terms of scalability, resilience, whether you want security authorisation at the highest application tier, or right down to 'row' level in the database, etc. - however please don't fall into the trap of considering 'NoSQL' as being single category. MongoDB, with its document-store type solution is a very different model to key-value-pair stores (like AWS DynamoDB), or column stores (like AWS RedShift) or for more complex data relationships, Entity Graph Stores (like AWS Neptune), to stores designed for tokenisation and text search (ElasticSearch) etc.
Also critical in all this is how many items you believe you need to index by. RDBMS/SQL stores are great for having as many indexes as you want, other than the slow-down in write speed, whereas databases like Amazon DynamoDB provide blisteringly fast read/write performance, but are very limited on key indexing capabilities.
It feels like you have most experience with SQL/RDBMS technologies, so for the simplest learning curve, and if your application fits it, then I'd personally start by looking at AWS Aurora https://aws.amazon.com/rds/aurora/ .
FIrstly, it may help if you explain what you mean by "complex relationships between project entities". Secondly, you can build a fast and scalable solution using either. With that said however, the data sounds relational so I would recommend MySQL.
I think, Its depend of your project type and your skills. MySQL is good and simple for maintenance but MongoDB need more skills and knowledge. If you work on little project, use MySQL. For your project type, MySQL is enough after you can migrate with PostgreSQL
I am going to work on a real estate project and have to decide on a database. Now, SQL databases can be very efficient if appropriately designed. More relations between the data and less redundancy. But with a #NoSQL database, the development time is reduced, and it is easy to query. Since this is my first time working on the real estate domain, I would like to pick a database that would be efficient in the long run.
I recommend PostgreSQL as it’s the most powerful out of the 3 databases you mentioned. It supports JSON objects so you can mimic the MongoDB functionality, but I would also argue that SQL is actually quite powerful and in many cases significantly easier to work with than with NoSQL databases.
Stay away from foreign keys, keep it fast and simple. Define your data structures well in advance. Try to model your data structures based on your system’s vision; based on where it’s going and not based solely on what you currently need it to do. This will help you avoid drastic changes to your database after your system is launched. Populate the database with fake data and run tests. PostgreSQL allows you to create Views from multiple tables. Try to create those views and make sure you can easily create useful views from multiple tables. Run an Explain on those view queries to make sure you created your indexes correctly. Make sure it’s fast!
Any of those three databases are going to be efficient, scalable, and reliable in the long term if you configure and use them correctly. They all also have solid hosting solutions.
All things being equal, I would agree with other posters that Postgres is my preference among the three, but there are caveats.
MongoDB and MySQL have better support for mutli-region replication in your big three cloud environments. Azure recently bought Citus Data, which was a best-in-class Postgres replication solution, so they might be the only one I trust to provide cross-region replication at the moment.
If you have a single region deployment and are on AWS, I can't recommend Aurora Postgres highly enough. It's a very good implementation and extremely performant.
I'll second another piece of advice. Postgresql's JSON columns are a dream when it comes to productivity and I use them frequently with our Rails application. In these cases, no migration is required to change schema. We store payloads with dozens or hundreds of keys and performance has not been an issue. We also have a lot of relational tables, so the joins we get with SQL are very important to us and hard to replicate with a NoQL solution.
That really depends of where do you see you application in the long run. On any application, any of those choices are excellent. You could argue about good support on JSON binaries, but even MySQL has an excellent support for that on the latest versions.
On the long run, when your application gets hundreds of thousands of requests per second, you might start thinking about how many inputs you will have in the database compared to the outputs. PostgresSQL it’s excellent at giving you outputs, but table corruption can happen when you start receiving this massive number of inputs (Which was the reason Uber switched from Postgres to MySQL)
On our OPS Platform at CTO.ai , we decided to use Postgres, because we need a reliable and agile way to send the output to our users, so that was out best choice in the long run for our product.
We are planning to migrate one of my applications from MSSQL to MySQL. Can someone help me with the version to select?. I have a strong inclination towards MySql 5.7. But, I see there are some standout features added in Mysql 8.0 like JSON_TABLE. Just wanted to know if the newer version has not compromised on its speed while giving out some add on features.
MySQL AB doesn't implement anything in MySQL until they can find a way to do it efficiently and, often, more efficiently than other systems. So although I don't have experience with benchmarking JSON_TABLEs or similar new features, their development philosophy alone suggests that version 8 for the latest features would be a safe jump without sacrificing system performance.
MySQL 8.0 is significantly better than MySQL 5.7. For all InnoDB row operations, you'll see a great performance improvement. Also, the time taken to process transactions is lower in MySQL 8.0. Moreover, there has been an improvement in managing read and read/write workloads.
Hello,
I am trying to design an online ordering app similar to Doordash or Uber Eats. I'm having a hard time trying to finalise on what database (or mixture of databases) to use. I'm leaning towards using a relational database like MySQL or PostgreSQL. But, when the application grows, I don't want to join on 20 tables to get a data. Any help would be greatly appreciated. Thank you for your time.
Hello Suhas , We build our product www.voilacabs.com which is in the same lines as yours but we have used a combination of Mysql and MongoDB. When using MySQL, i would recommend doing the following: 1. Use Mysql only for storage only and for realtime updates we recommend MongoDB. 2. Don't try to Join more than 3 tables. ( the moment you reach 3 join stop there and try to un-normalized database. 3. Never or very rarely use Auto-increments. ( we recommend using UUIDS ) . Use UUIDS always for Auto increments for MYSQL. If you using Postgre SQL then i would suggest you to please check this https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c There is a stored procedure that generated unique keys instead of auto-increment keys and that will help you sharding or clustering database without sync errors. 4. Also For MongoDB if you can put a layer of REDIS Cache then that will boost your api performance under large loads. 5. Use Node.js programing language as that function asynchronously .
Let me know if you still need any suggestion's . Thanks & Regards Rupen Makhecha CTO @ Voila Cab's www.voilacabs.com
I would recommend a mixture of MySQL and MongoDB. Using MongoDB for the Content Distribution Network (CDN) will make it easy to store high volume incoming data. MySQL is recommended to be used for business logic. PostgreSQL is not recommended since you will be faced with inefficient database replication features and constant migration from one PostgreSQL version to another.
I asked my last question incorrectly. Rephrasing it here.
I am looking for the most secure open source database for my project I'm starting: https://github.com/SuPragma/SuPragma/wiki
Which database is more secure? MySQL or PostgreSQL? Are there others I should be considering? Is it possible to change the encryption keys dynamically?
Thanks,
Raj
It is open-source and more tools than mySQL. PostgreSQL is an object-relational database management system (ORDBMS) with an emphasis on extensibility and standards compliance. It is also good for small companies due to tools for free availability. PostgreSQL includes built-in support for regular B-tree and hash indexes. Indexes in PostgreSQL also support Expression & Partial Indices ( index only a part of a table). Expression Index can be created with an index of the result of an expression or function, instead of simply the value of a column.
PostgreSQL provides more tools and builtin features around security, eg: row level security and the support of SELinux (through SE-PostgreSQL). Overall, whatever you choose, the important is to keep it updated and have the skills to apply security best practices and update them regurarly, without this, it's like putting your money in Fort knox but leaving the vault key in a public place.
At Pushnami we were looking at several alternative databases that would support following architectural requirements: - very quick prototyping for an unknown domain - ability to support large amounts of data - native ability to replicate and fail over - full stack approach for Node.js development After careful consideration MongoDB came on top, and 3 years later we are still very happy with that decision. Currently we keep almost 2TB of data in our cluster, and start thinking about sharding.
MySQL has a lot of strengths working for it. It's simple and easy to set up and use. It's JSON engine is also really good these days. Mongo is also simple to setup and use, and it's speed as a document-object storage engine is first class.
Where Postgres has both beat is in it's combining of all of the features that make both MySQL and Mongo great, while adding on enterprise grade level scalability and replication. It's Postgres' stability and robustness, while still fulfilling the roles of it's contemporaries extremely well that edge Postgre for me.
When I was new with web development, I was using PHP for backend and MySQL for database. But after improving my JS skills, I chosen Node.js. Because of too many reasons including npm, express, community, fast coding and etc. MongoDB is so good for using with Node.js. If your JS skills are enough good, I recommend to migrate to Node.js and MongoDB.
My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.
In addition to being a lot cheaper, Google Cloud Pub/Sub allowed us to not worry about maintaining any more infrastructure that needed.
We moved from a self-hosted RabbitMQ over to CloudAMQP and decided that since we use GCP anyway, why not try their managed PubSub?
It is one of the better decisions that we made, and we can just focus about building more important stuff!
PostgreSQL is enterprise level database with transactions, full-text indexes, vector indexes, JSON, BLOB, geo-spatial data and a lot more. Highly scalable, configurable and easily maintainable. all that on an open source RDBMS database and you are still looking for GPL licensed MySQL with limited features? Look again.
We wanted a JSON datastore that could save the state of our bioinformatics visualizations without destructive normalization. As a leading NoSQL data storage technology, MongoDB has been a perfect fit for our needs. Plus it's open source, and has an enterprise SLA scale-out path, with support of hosted solutions like Atlas. Mongo has been an absolute champ. So much so that SQL and Oracle have begun shipping JSON column types as a new feature for their databases. And when Fast Healthcare Interoperability Resources (FHIR) announced support for JSON, we basically had our FHIR datalake technology.
In the field of bioinformatics, we regularly work with hierarchical and unstructured document data. Unstructured text data from PDFs, image data from radiographs, phylogenetic trees and cladograms, network graphs, streaming ECG data... none of it fits into a traditional SQL database particularly well. As such, we prefer to use document oriented databases.
MongoDB is probably the oldest component in our stack besides Javascript, having been in it for over 5 years. At the time, we were looking for a technology that could simply cache our data visualization state (stored in JSON) in a database as-is without any destructive normalization. MongoDB was the perfect tool; and has been exceeding expectations ever since.
Trivia fact: some of the earliest electronic medical records (EMRs) used a document oriented database called MUMPS as early as the 1960s, prior to the invention of SQL. MUMPS is still in use today in systems like Epic and VistA, and stores upwards of 40% of all medical records at hospitals. So, we saw MongoDB as something as a 21st century version of the MUMPS database.
While there's been some very clever techniques that has allowed non-natively supported geo querying to be performed, it is incredibly slow in the long game and error prone at best.
MySQL finally introduced it's own GEO functions and special indexing operations for GIS type data. I prototyped with this, as MySQL is the most familiar database to me. But no matter what I did with it, how much tuning i'd give it, how much I played with it, the results would come back inconsistent.
It was very disappointing.
I figured, at this point, that SQL Server, being an enterprise solution authored by one of the biggest worldwide software developers in the world, Microsoft, might contain some decent GIS in it.
I was very disappointed.
Postgres is a Database solution i'm still getting familiar with, but I noticed it had no built in support for GIS. So I hilariously didn't pay it too much attention. That was until I stumbled upon PostGIS and my world changed forever.
I happen to point my asp.net core web application from MSSQL to MySQL due to infrastructure costs associated with the former db. The application also had challenges creating a migration schema of asp.net membership on MySQL.
After a thorough research I figured out how to do it and also made a video and uploaded to youtube. You can check that here https://youtu.be/X4I0DUw6C84
The full source code for the demo template is available on github here http://bit.ly/2LWgacA
Pros of MySQL
- Sql800
- Free679
- Easy562
- Widely used528
- Open source490
- High availability180
- Cross-platform support160
- Great community104
- Secure79
- Full-text indexing and searching75
- Fast, open, available26
- Reliable16
- SSL support16
- Robust15
- Enterprise Version9
- Easy to set up on all platforms7
- NoSQL access to JSON data type3
- Relational database1
- Easy, light, scalable1
- Sequel Pro (best SQL GUI)1
- Replica Support1
Pros of RabbitMQ
- It's fast and it works with good metrics/monitoring235
- Ease of configuration80
- I like the admin interface60
- Easy to set-up and start with52
- Durable22
- Standard protocols19
- Intuitive work through python19
- Written primarily in Erlang11
- Simply superb9
- Completeness of messaging patterns7
- Reliable4
- Scales to 1 million messages per second4
- Better than most traditional queue based message broker3
- Distributed3
- Supports MQTT3
- Supports AMQP3
- Clear documentation with different scripting language2
- Better routing system2
- Inubit Integration2
- Great ui2
- High performance2
- Reliability2
- Open-source2
- Runs on Open Telecom Platform2
- Clusterable2
- Delayed messages2
- Supports Streams1
- Supports STOMP1
- Supports JMS1
Sign up to add or upvote prosMake informed product decisions
Cons of MySQL
- Owned by a company with their own agenda16
- Can't roll back schema changes3
Cons of RabbitMQ
- Too complicated cluster/HA config and management9
- Needs Erlang runtime. Need ops good with Erlang runtime6
- Configuration must be done first, not by your code5
- Slow4