What is TestNG and what are its top alternatives?
Top Alternatives to TestNG
- JUnit
JUnit is a simple framework to write repeatable tests. It is an instance of the xUnit architecture for unit testing frameworks. ...
- Cucumber
Cucumber is a tool that supports Behaviour-Driven Development (BDD) - a software development process that aims to enhance software quality and reduce maintenance costs. ...
- Selenium
Selenium automates browsers. That's it! What you do with that power is entirely up to you. Primarily, it is for automating web applications for testing purposes, but is certainly not limited to just that. Boring web-based administration tasks can (and should!) also be automated as well. ...
- Mockito
It is a mocking framework that tastes really good. It lets you write beautiful tests with a clean & simple API. It doesn’t give you hangover because the tests are very readable and they produce clean verification errors. ...
- NUnit
An evolving, open source framework designed for writing and running tests in Microsoft .NET programming languages.It is an aspect of test-driven development , which is part of a larger software design paradigm known as Extreme Programming ...
- Apache Maven
Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...
- pytest
A framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries. It is a mature full-featured Python testing tool. ...
- xUnit
It is a free, open source, community-focused unit testing tool for the .NET Framework. It is the latest technology for unit testing C#, F#, VB.NET and other .NET languages. It works with ReSharper, CodeRush, TestDriven.NET and Xamarin. ...
TestNG alternatives & related posts
related JUnit posts
We are looking for a Testing Tool that can integrate with Java/ React/ Go/ Python/ Node.js. Which amongst the three tools JUnit, NUnit & Selenium would be the best for this use case?
We use JUnit for our Java Unit and Integration tests in Version 5. Combined with @JMockit2 and @truth (from Google) we perform all kinds of tests on our minecraft, standalone and microservice architecture.
We prefer JUnit over TestNG because of the bigger community, better support and the generally more agile development. JUnit integrates nicely with most software, while TestNG support is a little more limited.
- Simple Syntax20
- Simple usage8
- Huge community5
- Nice report3
related Cucumber posts
For our digital QA organization to support a complex hybrid monolith/microservice architecture, our team took on the lofty goal of building out a commonized UI test automation framework. One of the primary requisites included a technical minimalist threshold such that an engineer or analyst with fundamental knowledge of JavaScript could automate their tests with greater ease. Just to list a few: - Nightwatchjs - Selenium - Cucumber - GitHub - Go.CD - Docker - ExpressJS - React - PostgreSQL
With this structure, we're able to combine the automation efforts of each team member into a centralized repository while also providing new relevant metrics to business owners.
@producthunt LambdaTest Selenium JavaScript Java Python PHP Cucumber TeamCity CircleCI With this new release of LambdaTest automation, you can run tests across an Online Selenium Grid of 2000+ browsers and OS combinations to perform cross browser testing. This saves you from the pain of maintaining the infrastructure and also saves you the licensing costs for browsers and operating systems. #testing #Seleniumgrid #Selenium #testautomation #automation #webdriver #producthunt hunted
- Automates browsers172
- Testing154
- Essential tool for running test automation101
- Remote Control24
- Record-Playback24
- Data crawling8
- Supports end to end testing7
- Functional testing6
- Easy set up6
- The Most flexible monitoring system4
- End to End Testing3
- Easy to integrate with build tools3
- Comparing the performance selenium is faster than jasm2
- Record and playback2
- Compatible with Python2
- Easy to scale2
- Integration Tests2
- Integrated into Selenium-Jupiter framework0
- Flaky tests8
- Slow as needs to make browser (even with no gui)4
- Update browser drivers1
related Selenium posts
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.
For our digital QA organization to support a complex hybrid monolith/microservice architecture, our team took on the lofty goal of building out a commonized UI test automation framework. One of the primary requisites included a technical minimalist threshold such that an engineer or analyst with fundamental knowledge of JavaScript could automate their tests with greater ease. Just to list a few: - Nightwatchjs - Selenium - Cucumber - GitHub - Go.CD - Docker - ExpressJS - React - PostgreSQL
With this structure, we're able to combine the automation efforts of each team member into a centralized repository while also providing new relevant metrics to business owners.
related Mockito posts
related NUnit posts
- Dependency management137
- Necessary evil71
- I’d rather code my app, not my build60
- Publishing packaged artifacts48
- Convention over configuration43
- Modularisation18
- Consistency across builds11
- Prevents overengineering using scripting6
- Runs Tests4
- Lot of cool plugins4
- Extensible3
- Hard to customize2
- Runs on Linux2
- Runs on OS X1
- Slow incremental build1
- Inconsistent buillds1
- Undeterminisc1
- Good IDE tooling1
- Complex6
- Inconsistent buillds1
- Not many plugin-alternatives0
related Apache Maven posts
















Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
We use Apache Maven because it is a standard. Gradle is very good alternative, but Gradle doesn't provide any advantage for our project. Gradle is slower (without running daemon), need more resources and a learning curve is quite big. Our project can not use a great flexibility of Gradle. On the other hand, Maven is well-know tool integrated in many IDEs, Dockers and so on.