Alternatives to wercker logo

Alternatives to wercker

Travis CI, Jenkins, Spinnaker, CircleCI, and GitLab are the most popular alternatives and competitors to wercker.
180
154
+ 1
242

What is wercker and what are its top alternatives?

Wercker is a CI/CD developer automation platform designed for Microservices & Container Architecture.
wercker is a tool in the Continuous Integration category of a tech stack.

Top Alternatives to wercker

  • Travis CI

    Travis CI

    Free for open source projects, our CI environment provides multiple runtimes (e.g. Node.js or PHP versions), data stores and so on. Because of this, hosting your project on travis-ci.com means you can effortlessly test your library or applications against multiple runtimes and data stores without even having all of them installed locally. ...

  • Jenkins

    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • Spinnaker

    Spinnaker

    Created at Netflix, it has been battle-tested in production by hundreds of teams over millions of deployments. It combines a powerful and flexible pipeline management system with integrations to the major cloud providers. ...

  • CircleCI

    CircleCI

    Continuous integration and delivery platform helps software teams rapidly release code with confidence by automating the build, test, and deploy process. Offers a modern software development platform that lets teams ramp. ...

  • GitLab

    GitLab

    GitLab offers git repository management, code reviews, issue tracking, activity feeds and wikis. Enterprises install GitLab on-premise and connect it with LDAP and Active Directory servers for secure authentication and authorization. A single GitLab server can handle more than 25,000 users but it is also possible to create a high availability setup with multiple active servers. ...

  • Docker

    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application ‚ÄĒ from legacy to what comes next ‚ÄĒ and securely run them anywhere ...

  • Ansible

    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • GitLab CI

    GitLab CI

    GitLab offers a continuous integration service. If you add a .gitlab-ci.yml file to the root directory of your repository, and configure your GitLab project to use a Runner, then each merge request or push triggers your CI pipeline. ...

wercker alternatives & related posts

Travis CI logo

Travis CI

7.5K
5.2K
1.8K
A hosted continuous integration service for open source and private projects
7.5K
5.2K
+ 1
1.8K
PROS OF TRAVIS CI
  • 508
    Github integration
  • 388
    Free for open source
  • 272
    Easy to get started
  • 191
    Nice interface
  • 163
    Automatic deployment
  • 72
    Tutorials for each programming language
  • 40
    Friendly folks
  • 29
    Support for multiple ruby versions
  • 28
    Osx support
  • 24
    Easy handling of secret keys
  • 6
    Fast builds
  • 4
    Support for students
  • 3
    The best tool for Open Source CI
  • 3
    Hosted
  • 3
    Build Matrices
  • 2
    Straightforward Github/Coveralls integration
  • 2
    Easy of Usage
  • 2
    Github Pull Request build
  • 2
    Integrates with everything
  • 1
    Docker support
  • 1
    Configuration saved with project repository
  • 1
    Free for students
  • 1
    Build matrix
  • 1
    No-brainer for CI
  • 1
    Debug build workflow
  • 1
    Great Documentation
  • 1
    Multi-threaded run
  • 1
    Hipchat Integration
  • 1
    Caching resolved artifacts
  • 1
    Ubuntu trusty is not supported
  • 0
    Perfect
  • 0
    One
CONS OF TRAVIS CI
  • 8
    Can't be hosted insternally
  • 3
    Feature lacking
  • 3
    Unstable
  • 2
    Incomplete documentation for all platforms

related Travis CI posts

Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named ‚Äúdebug build‚ÄĚ button, Travis is now the clear winner. It‚Äôs easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Tim Abbott
Shared insights
on
Travis CI
CircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
Jenkins logo

Jenkins

39.2K
31.9K
2.2K
An extendable open source continuous integration server
39.2K
31.9K
+ 1
2.2K
PROS OF JENKINS
  • 521
    Hosted internally
  • 463
    Free open source
  • 313
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 208
    Rich set of plugins with good documentation
  • 108
    Has support for build pipelines
  • 72
    Open source and tons of integrations
  • 63
    Easy setup
  • 61
    It is open-source
  • 54
    Workflow plugin
  • 11
    Configuration as code
  • 10
    Very powerful tool
  • 9
    Many Plugins
  • 8
    Great flexibility
  • 8
    Git and Maven integration is better
  • 7
    Continuous Integration
  • 6
    Github integration
  • 6
    Slack Integration (plugin)
  • 5
    100% free and open source
  • 5
    Self-hosted GitLab Integration (plugin)
  • 5
    Easy customisation
  • 4
    Docker support
  • 3
    Pipeline API
  • 3
    Excellent docker integration
  • 3
    Platform idnependency
  • 3
    Fast builds
  • 2
    Hosted Externally
  • 2
    It`w worked
  • 2
    Can be run as a Docker container
  • 2
    Customizable
  • 2
    AWS Integration
  • 2
    It's Everywhere
  • 2
    JOBDSL
  • 1
    NodeJS Support
  • 1
    PHP Support
  • 1
    Ruby/Rails Support
  • 1
    Universal controller
  • 1
    Easily extendable with seamless integration
  • 1
    Build PR Branch Only
CONS OF JENKINS
  • 12
    Workarounds needed for basic requirements
  • 8
    Groovy with cumbersome syntax
  • 6
    Plugins compatibility issues
  • 6
    Limited abilities with declarative pipelines
  • 5
    Lack of support
  • 4
    No YAML syntax
  • 2
    Too tied to plugins versions

related Jenkins posts

Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named ‚Äúdebug build‚ÄĚ button, Travis is now the clear winner. It‚Äôs easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 21 upvotes · 4.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Spinnaker logo

Spinnaker

180
268
9
Multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence
180
268
+ 1
9
PROS OF SPINNAKER
  • 9
    Mature
CONS OF SPINNAKER
  • 2
    No GitOps
  • 1
    Configuration time
  • 1
    Management overhead
  • 1
    Ease of use

related Spinnaker posts

John Kodumal

LaunchDarkly is almost a five year old company, and our methodology for deploying was state of the art... for 2014. We recently undertook a project to modernize the way we #deploy our software, moving from Ansible-based deploy scripts that executed on our local machines, to using Spinnaker (along with Terraform and Packer) as the basis of our deployment system. We've been using Armory's enterprise Spinnaker offering to make this project a reality.

See more
CircleCI logo

CircleCI

8.1K
5K
957
Automate your development process quickly, safely, and at scale
8.1K
5K
+ 1
957
PROS OF CIRCLECI
  • 223
    Github integration
  • 175
    Easy setup
  • 151
    Fast builds
  • 94
    Competitively priced
  • 73
    Slack integration
  • 54
    Docker support
  • 44
    Awesome UI
  • 33
    Great customer support
  • 18
    Ios support
  • 14
    Hipchat integration
  • 12
    SSH debug access
  • 11
    Free for Open Source
  • 5
    Mobile support
  • 5
    Bitbucket integration
  • 4
    Nodejs support
  • 4
    AWS CodeDeploy integration
  • 3
    YAML configuration
  • 3
    Free for Github private repo
  • 3
    Great support
  • 2
    Clojure
  • 2
    Simple, clean UI
  • 2
    Clojurescript
  • 2
    OSX support
  • 2
    Continuous Deployment
  • 1
    Android support
  • 1
    Autoscaling
  • 1
    Fair pricing
  • 1
    All inclusive testing
  • 1
    Helpful documentation
  • 1
    Japanese in rspec comment appears OK
  • 1
    Favorite
  • 1
    Build PR Branch Only
  • 1
    Really easy to use
  • 1
    Unstable
  • 1
    So circular
  • 1
    Easy setup, easy to understand, fast and reliable
  • 1
    Parallel builds for slow test suites
  • 1
    Easy setup. 2.0 is fast!
  • 1
    Parallelism
  • 1
    Extremely configurable
  • 1
    Easy to deploy to private servers
  • 1
    Works
CONS OF CIRCLECI
  • 11
    Unstable
  • 6
    Scammy pricing structure
  • 0
    Aggressive Github permissions

related CircleCI posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 21 upvotes · 4.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Tim Abbott
Shared insights
on
Travis CI
CircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
GitLab logo

GitLab

37.4K
30K
2.3K
Open source self-hosted Git management software
37.4K
30K
+ 1
2.3K
PROS OF GITLAB
  • 489
    Self hosted
  • 418
    Free
  • 332
    Has community edition
  • 236
    Easy setup
  • 235
    Familiar interface
  • 130
    Includes many features, including ci
  • 106
    Nice UI
  • 80
    Good integration with gitlabci
  • 52
    Simple setup
  • 32
    Has an official mobile app
  • 30
    Free private repository
  • 24
    Continuous Integration
  • 16
    Open source, great ui (like github)
  • 14
    Slack Integration
  • 9
    Full CI flow
  • 8
    User, group, and project access management is simple
  • 8
    Free and unlimited private git repos
  • 7
    Intuitive UI
  • 7
    All in one (Git, CI, Agile..)
  • 6
    Built-in CI
  • 4
    Both public and private Repositories
  • 3
    Mattermost Chat client
  • 3
    Integrated Docker Registry
  • 2
    It's fully integrated
  • 2
    Unlimited free repos & collaborators
  • 2
    I like the its runners and executors feature
  • 2
    CI
  • 2
    So easy to use
  • 2
    One-click install through DigitalOcean
  • 2
    It's powerful source code management tool
  • 2
    Excellent
  • 2
    Build/pipeline definition alongside code
  • 2
    Security and Stable
  • 2
    Issue system
  • 2
    Free private repos
  • 2
    Low maintenance cost due omnibus-deployment
  • 2
    On-premises
  • 1
    Powerful Continuous Integration System
  • 1
    Powerful software planning and maintaining tools
  • 1
    Groups of groups
  • 1
    Kubernetes integration with GitLab CI
  • 1
    Review Apps feature
  • 1
    Built-in Docker Registry
  • 1
    Dockerized
  • 1
    Beautiful
  • 1
    Wounderful
  • 1
    Opensource
  • 1
    Because is the best remote host for git repositories
  • 1
    Not Microsoft Owned
  • 1
    Full DevOps suite with Git
  • 1
    Many private repo
  • 1
    Native CI
  • 1
    HipChat intergration
  • 1
    Kubernetes Integration
  • 1
    Published IP list for whitelisting (gl-infra#434)
  • 1
    Great for team collaboration
  • 1
    It includes everything I need, all packaged with docker
  • 1
    Multilingual interface
  • 1
    The dashboard with deployed environments
  • 0
    Supports Radius/Ldap & Browser Code Edits
CONS OF GITLAB
  • 26
    Slow ui performance
  • 6
    Introduce breaking bugs every release
  • 5
    Insecure (no published IP list for whitelisting)
  • 0
    Built-in Docker Registry
  • 0
    Review Apps feature

related GitLab posts

Tim Abbott
Shared insights
on
GitHub
GitLab
at

I have mixed feelings on GitHub as a product and our use of it for the Zulip open source project. On the one hand, I do feel that being on GitHub helps people discover Zulip, because we have enough stars (etc.) that we rank highly among projects on the platform. and there is a definite benefit for lowering barriers to contribution (which is important to us) that GitHub has such a dominant position in terms of what everyone has accounts with.

But even ignoring how one might feel about their new corporate owner (MicroSoft), in a lot of ways GitHub is a bad product for open source projects. Years after the "Dear GitHub" letter, there are still basic gaps in its issue tracker:

  • You can't give someone permission to label/categorize issues without full write access to a project (including ability to merge things to master, post releases, etc.).
  • You can't let anyone with a GitHub account self-assign issues to themselves.
  • Many more similar issues.

It's embarrassing, because I've talked to GitHub product managers at various open source events about these things for 3 years, and they always agree the thing is important, but then nothing ever improves in the Issues product. Maybe the new management at MicroSoft will fix their product management situation, but if not, I imagine we'll eventually do the migration to GitLab.

We have a custom bot project, http://github.com/zulip/zulipbot, to deal with some of these issues where possible, and every other large project we talk to does the same thing, more or less.

See more
Joshua Dean K√ľpper
CEO at Scrayos UG (haftungsbeschränkt) · | 17 upvotes · 220.8K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Docker logo

Docker

100.5K
79.4K
3.8K
Enterprise Container Platform for High-Velocity Innovation.
100.5K
79.4K
+ 1
3.8K
PROS OF DOCKER
  • 821
    Rapid integration and build up
  • 688
    Isolation
  • 517
    Open source
  • 504
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 459
    Lightweight
  • 217
    Standardization
  • 182
    Scalable
  • 105
    Upgrading / down­grad­ing / ap­pli­ca­tion versions
  • 86
    Security
  • 84
    Private paas environments
  • 33
    Portability
  • 25
    Limit resource usage
  • 15
    I love the way docker has changed virtualization
  • 15
    Game changer
  • 12
    Fast
  • 11
    Concurrency
  • 7
    Docker's Compose tools
  • 4
    Fast and Portable
  • 4
    Easy setup
  • 4
    Because its fun
  • 3
    Makes shipping to production very simple
  • 2
    It's dope
  • 1
    Highly useful
  • 1
    MacOS support FAKE
  • 1
    Its cool
  • 1
    Docker hub for the FTW
  • 1
    Very easy to setup integrate and build
  • 1
    Package the environment with the application
  • 1
    Does a nice job hogging memory
  • 1
    Open source and highly configurable
  • 1
    Simplicity, isolation, resource effective
CONS OF DOCKER
  • 7
    New versions == broken features
  • 4
    Documentation not always in sync
  • 3
    Moves quickly
  • 3
    Unreliable networking

related Docker posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 2.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 21 upvotes · 4.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Ansible logo

Ansible

12.9K
10.1K
1.3K
Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
12.9K
10.1K
+ 1
1.3K
PROS OF ANSIBLE
  • 275
    Agentless
  • 204
    Great configuration
  • 192
    Simple
  • 173
    Powerful
  • 150
    Easy to learn
  • 66
    Flexible
  • 54
    Doesn't get in the way of getting s--- done
  • 33
    Makes sense
  • 29
    Super efficient and flexible
  • 27
    Powerful
  • 11
    Dynamic Inventory
  • 8
    Backed by Red Hat
  • 7
    Works with AWS
  • 6
    Cloud Oriented
  • 6
    Easy to maintain
  • 4
    Because SSH
  • 4
    Multi language
  • 4
    Easy
  • 4
    Simple
  • 4
    Procedural or declarative, or both
  • 4
    Simple and powerful
  • 3
    Vagrant provisioner
  • 3
    Consistency
  • 2
    Debugging is simple
  • 2
    Well-documented
  • 2
    Merge hash to get final configuration similar to hiera
  • 2
    Fast as hell
  • 2
    Masterless
  • 1
    Work on windows, but difficult to manage
CONS OF ANSIBLE
  • 5
    Hard to install
  • 4
    Dangerous
  • 3
    Bloated
  • 3
    Backward compatibility
  • 2
    Doesn't Run on Windows
  • 2
    No immutable infrastructure

related Ansible posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 21 upvotes · 4.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sebastian Gńôbski

Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

See more
GitLab CI logo

GitLab CI

1.8K
1.2K
70
GitLab integrated CI to test, build and deploy your code
1.8K
1.2K
+ 1
70
PROS OF GITLAB CI
  • 21
    Robust CI with awesome Docker support
  • 12
    Simple configuration
  • 8
    All in one solution
  • 6
    Source Control and CI in one place
  • 5
    Integrated with VCS on commit
  • 5
    Easy to configure own build server i.e. GitLab-Runner
  • 4
    Free and open source
  • 2
    Hosted internally
  • 1
    Built-in support of Kubernetes
  • 1
    Enable or disable pipeline by using env variables
  • 1
    Gitlab templates could be shared across logical group
  • 1
    Built-in Docker Registry
  • 1
    Easy to setup the dedicated runner to particular job
  • 1
    Pipeline could be started manually
  • 1
    Built-in support of Review Apps
CONS OF GITLAB CI
    Be the first to leave a con

    related GitLab CI posts

    Joshua Dean K√ľpper
    CEO at Scrayos UG (haftungsbeschränkt) · | 17 upvotes · 220.8K views

    We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

    While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

    We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

    See more
    Sebastian Dellwig
    Tech Lead at Porsche Digital GmbH · | 6 upvotes · 123.5K views
    Shared insights
    on
    GitLab CI
    CircleCI
    Codeship

    We are using GitLab CI and were very happy with it. The integration of all tools like CI/CD, tickets, etc makes it very easy to stay on top of things. But be aware, Gitlab currently does not have iOS build support. So if you want to exchange that for CircleCI / Codeship to have to invest some effort. We are using a managed Mac OS device and installed the Gitlab runner there, to have iOS builds.

    See more