Alternatives to Argo logo

Alternatives to Argo

Airflow, Flux, Jenkins, Spinnaker, and Kubeflow are the most popular alternatives and competitors to Argo.
607
433
+ 1
6

What is Argo and what are its top alternatives?

Argo is an open source container-native workflow engine for getting work done on Kubernetes. Argo is implemented as a Kubernetes CRD (Custom Resource Definition).
Argo is a tool in the Container Tools category of a tech stack.
Argo is an open source tool with GitHub stars and GitHub forks. Here’s a link to Argo's open source repository on GitHub

Top Alternatives to Argo

  • Airflow
    Airflow

    Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. ...

  • Flux
    Flux

    Flux is the application architecture that Facebook uses for building client-side web applications. It complements React's composable view components by utilizing a unidirectional data flow. It's more of a pattern rather than a formal framework, and you can start using Flux immediately without a lot of new code. ...

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • Spinnaker
    Spinnaker

    Created at Netflix, it has been battle-tested in production by hundreds of teams over millions of deployments. It combines a powerful and flexible pipeline management system with integrations to the major cloud providers. ...

  • Kubeflow
    Kubeflow

    The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Docker Compose
    Docker Compose

    With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...

  • Rancher
    Rancher

    Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...

Argo alternatives & related posts

Airflow logo

Airflow

1.7K
2.7K
126
A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb
1.7K
2.7K
+ 1
126
PROS OF AIRFLOW
  • 51
    Features
  • 14
    Task Dependency Management
  • 12
    Beautiful UI
  • 12
    Cluster of workers
  • 10
    Extensibility
  • 6
    Open source
  • 5
    Complex workflows
  • 5
    Python
  • 3
    Good api
  • 3
    Apache project
  • 3
    Custom operators
  • 2
    Dashboard
CONS OF AIRFLOW
  • 2
    Observability is not great when the DAGs exceed 250
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward

related Airflow posts

Shared insights
on
AWS Step FunctionsAWS Step FunctionsAirflowAirflow

I am working on a project that grabs a set of input data from AWS S3, pre-processes and divvies it up, spins up 10K batch containers to process the divvied data in parallel on AWS Batch, post-aggregates the data, and pushes it to S3.

I already have software patterns from other projects for Airflow + Batch but have not dealt with the scaling factors of 10k parallel tasks. Airflow is nice since I can look at which tasks failed and retry a task after debugging. But dealing with that many tasks on one Airflow EC2 instance seems like a barrier. Another option would be to have one task that kicks off the 10k containers and monitors it from there.

I have no experience with AWS Step Functions but have heard it's AWS's Airflow. There looks to be plenty of patterns online for Step Functions + Batch. Do Step Functions seem like a good path to check out for my use case? Do you get the same insights on failing jobs / ability to retry tasks as you do with Airflow?

See more
Shared insights
on
JenkinsJenkinsAirflowAirflow

I am looking for an open-source scheduler tool with cross-functional application dependencies. Some of the tasks I am looking to schedule are as follows:

  1. Trigger Matillion ETL loads
  2. Trigger Attunity Replication tasks that have downstream ETL loads
  3. Trigger Golden gate Replication Tasks
  4. Shell scripts, wrappers, file watchers
  5. Event-driven schedules

I have used Airflow in the past, and I know we need to create DAGs for each pipeline. I am not familiar with Jenkins, but I know it works with configuration without much underlying code. I want to evaluate both and appreciate any advise

See more
Flux logo

Flux

521
508
130
Application Architecture for Building User Interfaces
521
508
+ 1
130
PROS OF FLUX
  • 44
    Unidirectional data flow
  • 32
    Architecture
  • 19
    Structure and Data Flow
  • 14
    Not MVC
  • 12
    Open source
  • 6
    Created by facebook
  • 3
    A gestalt shift
CONS OF FLUX
    Be the first to leave a con

    related Flux posts

    Marcos Iglesias
    Sr. Software Engineer at Eventbrite · | 13 upvotes · 222K views

    We are in the middle of a change of the stack on the front end. So we used Backbone.js with Marionette. Then we also created our own implementation of a Flux kind of flow. We call it eb-flux. We have worked with Marionette for a long time. Then at some point we start evolving and end up having a kind of Redux.js-style architecture, but with Marionette.

    But then maybe one and a half years ago, we started moving into React and that's why we created the Eventbrite design system. It's a really nice project that probably could be open sourced. It's a library of components for our React components.

    With the help of that library, we are building our new stack with React and sometimes Redux when it's necessary.

    See more
    Jenkins logo

    Jenkins

    57.7K
    48.9K
    2.2K
    An extendable open source continuous integration server
    57.7K
    48.9K
    + 1
    2.2K
    PROS OF JENKINS
    • 523
      Hosted internally
    • 469
      Free open source
    • 318
      Great to build, deploy or launch anything async
    • 243
      Tons of integrations
    • 211
      Rich set of plugins with good documentation
    • 111
      Has support for build pipelines
    • 68
      Easy setup
    • 66
      It is open-source
    • 53
      Workflow plugin
    • 13
      Configuration as code
    • 12
      Very powerful tool
    • 11
      Many Plugins
    • 10
      Continuous Integration
    • 10
      Great flexibility
    • 9
      Git and Maven integration is better
    • 8
      100% free and open source
    • 7
      Slack Integration (plugin)
    • 7
      Github integration
    • 6
      Self-hosted GitLab Integration (plugin)
    • 6
      Easy customisation
    • 5
      Pipeline API
    • 5
      Docker support
    • 4
      Fast builds
    • 4
      Hosted Externally
    • 4
      Excellent docker integration
    • 4
      Platform idnependency
    • 3
      AWS Integration
    • 3
      JOBDSL
    • 3
      It's Everywhere
    • 3
      Customizable
    • 3
      Can be run as a Docker container
    • 3
      It`w worked
    • 2
      Loose Coupling
    • 2
      NodeJS Support
    • 2
      Build PR Branch Only
    • 2
      Easily extendable with seamless integration
    • 2
      PHP Support
    • 2
      Ruby/Rails Support
    • 2
      Universal controller
    CONS OF JENKINS
    • 13
      Workarounds needed for basic requirements
    • 10
      Groovy with cumbersome syntax
    • 8
      Plugins compatibility issues
    • 7
      Lack of support
    • 7
      Limited abilities with declarative pipelines
    • 5
      No YAML syntax
    • 4
      Too tied to plugins versions

    related Jenkins posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 8M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Thierry Schellenbach

    Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

    Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

    Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

    #ContinuousIntegration #CodeCollaborationVersionControl

    See more
    Spinnaker logo

    Spinnaker

    232
    351
    13
    Multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence
    232
    351
    + 1
    13
    PROS OF SPINNAKER
    • 13
      Mature
    CONS OF SPINNAKER
    • 3
      No GitOps
    • 1
      Configuration time
    • 1
      Management overhead
    • 1
      Ease of use

    related Spinnaker posts

    John Kodumal

    LaunchDarkly is almost a five year old company, and our methodology for deploying was state of the art... for 2014. We recently undertook a project to modernize the way we #deploy our software, moving from Ansible-based deploy scripts that executed on our local machines, to using Spinnaker (along with Terraform and Packer) as the basis of our deployment system. We've been using Armory's enterprise Spinnaker offering to make this project a reality.

    See more
    Kubeflow logo

    Kubeflow

    198
    578
    18
    Machine Learning Toolkit for Kubernetes
    198
    578
    + 1
    18
    PROS OF KUBEFLOW
    • 9
      System designer
    • 3
      Google backed
    • 3
      Customisation
    • 3
      Kfp dsl
    • 0
      Azure
    CONS OF KUBEFLOW
      Be the first to leave a con

      related Kubeflow posts

      Biswajit Pathak
      Project Manager at Sony · | 6 upvotes · 807.5K views

      Can you please advise which one to choose FastText Or Gensim, in terms of:

      1. Operability with ML Ops tools such as MLflow, Kubeflow, etc.
      2. Performance
      3. Customization of Intermediate steps
      4. FastText and Gensim both have the same underlying libraries
      5. Use cases each one tries to solve
      6. Unsupervised Vs Supervised dimensions
      7. Ease of Use.

      Please mention any other points that I may have missed here.

      See more
      Shared insights
      on
      KubeflowKubeflowKubernetesKubernetesMLflowMLflow

      We are trying to standardise DevOps across both ML (model selection and deployment) and regular software. Want to minimise the number of tools we have to learn. Also want a scalable solution which is easy enough to start small - eg. on a powerful laptop and eventually be deployed at scale. MLflow vs Kubernetes (Kubeflow)?

      See more
      Kubernetes logo

      Kubernetes

      58.6K
      50.3K
      677
      Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
      58.6K
      50.3K
      + 1
      677
      PROS OF KUBERNETES
      • 164
        Leading docker container management solution
      • 128
        Simple and powerful
      • 106
        Open source
      • 76
        Backed by google
      • 58
        The right abstractions
      • 25
        Scale services
      • 20
        Replication controller
      • 11
        Permission managment
      • 9
        Supports autoscaling
      • 8
        Cheap
      • 8
        Simple
      • 6
        Self-healing
      • 5
        No cloud platform lock-in
      • 5
        Promotes modern/good infrascture practice
      • 5
        Open, powerful, stable
      • 5
        Reliable
      • 4
        Scalable
      • 4
        Quick cloud setup
      • 3
        Cloud Agnostic
      • 3
        Captain of Container Ship
      • 3
        A self healing environment with rich metadata
      • 3
        Runs on azure
      • 3
        Backed by Red Hat
      • 3
        Custom and extensibility
      • 2
        Sfg
      • 2
        Gke
      • 2
        Everything of CaaS
      • 2
        Golang
      • 2
        Easy setup
      • 2
        Expandable
      CONS OF KUBERNETES
      • 16
        Steep learning curve
      • 15
        Poor workflow for development
      • 8
        Orchestrates only infrastructure
      • 4
        High resource requirements for on-prem clusters
      • 2
        Too heavy for simple systems
      • 1
        Additional vendor lock-in (Docker)
      • 1
        More moving parts to secure
      • 1
        Additional Technology Overhead

      related Kubernetes posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 9.5M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more
      Docker Compose logo

      Docker Compose

      21.4K
      15.9K
      501
      Define and run multi-container applications with Docker
      21.4K
      15.9K
      + 1
      501
      PROS OF DOCKER COMPOSE
      • 123
        Multi-container descriptor
      • 110
        Fast development environment setup
      • 79
        Easy linking of containers
      • 68
        Simple yaml configuration
      • 60
        Easy setup
      • 16
        Yml or yaml format
      • 12
        Use Standard Docker API
      • 8
        Open source
      • 5
        Go from template to application in minutes
      • 5
        Can choose Discovery Backend
      • 4
        Scalable
      • 4
        Easy configuration
      • 4
        Kubernetes integration
      • 3
        Quick and easy
      CONS OF DOCKER COMPOSE
      • 9
        Tied to single machine
      • 5
        Still very volatile, changing syntax often

      related Docker Compose posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 8.9M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more

      Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

      We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

      See more
      Rancher logo

      Rancher

      944
      1.5K
      644
      Open Source Platform for Running a Private Container Service
      944
      1.5K
      + 1
      644
      PROS OF RANCHER
      • 103
        Easy to use
      • 79
        Open source and totally free
      • 63
        Multi-host docker-compose support
      • 58
        Load balancing and health check included
      • 58
        Simple
      • 44
        Rolling upgrades, green/blue upgrades feature
      • 42
        Dns and service discovery out-of-the-box
      • 37
        Only requires docker
      • 34
        Multitenant and permission management
      • 29
        Easy to use and feature rich
      • 11
        Cross cloud compatible
      • 11
        Does everything needed for a docker infrastructure
      • 8
        Simple and powerful
      • 8
        Next-gen platform
      • 7
        Very Docker-friendly
      • 6
        Support Kubernetes and Swarm
      • 6
        Application catalogs with stack templates (wizards)
      • 6
        Supports Apache Mesos, Docker Swarm, and Kubernetes
      • 6
        Rolling and blue/green upgrades deployments
      • 6
        High Availability service: keeps your app up 24/7
      • 5
        Easy to use service catalog
      • 4
        Very intuitive UI
      • 4
        IaaS-vendor independent, supports hybrid/multi-cloud
      • 4
        Awesome support
      • 3
        Scalable
      • 2
        Requires less infrastructure requirements
      CONS OF RANCHER
      • 10
        Hosting Rancher can be complicated

      related Rancher posts