Need advice about which tool to choose?Ask the StackShare community!
Cassandra vs Couchbase: What are the differences?
Introduction
This markdown provides a comparison between Cassandra and Couchbase, highlighting the key differences between the two databases.
1. Data Model: Cassandra: Cassandra follows a column-oriented data model, where data is organized by columns into rows and tables. It offers a flexible schema design, allowing the addition or modification of columns without impacting existing data. It supports a wide range of data types.
Couchbase: Couchbase follows a document-oriented data model, storing data as JSON documents. It provides a flexible schema that allows changes to the document structure without affecting other documents. It supports nested and complex data structures.
2. Distribution and Scalability: Cassandra: Cassandra has a distributed architecture with no master node. It follows a peer-to-peer model, allowing it to distribute data across multiple nodes, providing high availability and scalability. It uses consistent hashing to distribute data evenly across the cluster.
Couchbase: Couchbase also has a distributed architecture without a master node. It uses a data partitioning technique called Vbuckets to distribute and replicate data across multiple nodes. Couchbase supports automatic data sharding and rebalancing for scalability.
3. Replication and Consistency: Cassandra: Cassandra offers configurable replication across multiple data centers for high availability and fault tolerance. It provides tunable consistency levels, allowing users to choose between strong or eventual consistency.
Couchbase: Couchbase supports data replication for fault tolerance and high availability. It provides various consistency models, including strong consistency for ACID compliance and eventual consistency for high performance.
4. Query Language: Cassandra: Cassandra uses CQL (Cassandra Query Language), a SQL-like language, for querying the data. It supports CRUD operations, secondary indexes, and batch processing. However, it does not provide support for joins across different tables.
Couchbase: Couchbase uses N1QL (pronounced as "nickel"), a SQL-based language, for querying data. N1QL supports CRUD operations, joins across multiple documents, and secondary indexes, enabling more flexible and complex queries.
5. Caching and In-Memory Processing: Cassandra: Cassandra does not have built-in caching mechanisms. However, it integrates with external caching solutions like Apache Ignite or Redis to improve read performance. Cassandra stores all the data on disk, limiting in-memory processing capabilities.
Couchbase: Couchbase provides built-in caching capabilities with its Memory-First architecture. It stores frequently accessed data in memory, reducing the data retrieval latency. This approach enables fast in-memory processing and improves overall performance.
6. Data Consistency and Conflict Resolution: Cassandra: In Cassandra, eventual consistency is the default consistency model, which means that updates may propagate asynchronously. It relies on conflict resolution during data synchronization and uses timestamps to resolve conflicts.
Couchbase: Couchbase offers different consistency models, including strong consistency for immediate consistency and eventual consistency for improved performance. It uses vector clocks to detect and resolve conflicts during data replication.
In summary, Cassandra follows a column-oriented data model, supports flexible schema design, and uses CQL for querying data. It has a distributed architecture, tunable consistency, and integrates with external caching solutions. On the other hand, Couchbase follows a document-oriented data model, supports JSON documents, and uses N1QL for querying. It also has a distributed architecture, different consistency models, built-in caching, and in-memory processing capabilities.
Hey, we want to build a referral campaign mechanism that will probably contain millions of records within the next few years. We want fast read access based on IDs or some indexes, and isolation is crucial as some listeners will try to update the same document at the same time. What's your suggestion between Couchbase and MongoDB? Thanks!
I am biased (work for Scylla) but it sounds like a KV/wide column would be better in this use case. Document/schema free/lite DBs data stores are easier to get up and running on but are not as scalable (generally) as NoSQL flavors that require a more rigid data model like ScyllaDB. If your data volumes are going to be 10s of TB and transactions per sec 10s of 1000s (or more), look at Scylla. We have something called lightweight transactions (LWT) that can get you consistency.
I have found MongoDB highly consistent and highly available. It suits your needs. We usually trade off partion tolerance fot this. Having said that, I am little biased in recommendation as I haven't had much experience with couchbase on production.
Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.
My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.
Hi Umair, Did you try MongoDB. We are using MongoDB on a production environment and collecting data from devices like your scenario. We have a MongoDB cluster with three replicas. Data from devices are being written to the master node and real-time dashboard UI is using the secondary nodes for read operations. With this setup write operations are not affected by read operations too.
We Have thousands of .pdf docs generated from the same form but with lots of variability. We need to extract data from open text and more important - from tables inside the docs. The output of Couchbase/Mongo will be one row per document for backend processing. ADOBE renders the tables in an unusable form.
I prefer MongoDB due to own experience with migration of old archive of pdf and meta-data to a new “archive”. The biggest advantage is speed of filters output - a new archive is way faster and reliable then the old one - but also the the easy programming of MongoDB with many code snippets and examples available. I have no personal experience so far with Couchbase. From the architecture point of view both options are OK - go for the one you like.
I would like to suggest MongoDB or ArangoDB (can't choose both, so ArangoDB). MongoDB is more mature, but ArangoDB is more interesting if you will need to bring graph database ideas to solution. For example if some data or some documents are interlinked, then probably ArangoDB is a best solution.
To process tables we used Abbyy software stack. It's great on table extraction.
If you can select text with mouse drag in PDF. Use pdftotext it is fast! You can install it on server with command "apt-get install poppler-utils". Use it like "pdftotext -layout /path-to-your-file". In same folder it will make text file with line by line content. There is few classes on git stacks that you can use, also.
The problem I have is - we need to process & change(update/insert) 55M Data every 2 min and this updated data to be available for Rest API for Filtering / Selection. Response time for Rest API should be less than 1 sec.
The most important factors for me are processing and storing time of 2 min. There need to be 2 views of Data One is for Selection & 2. Changed data.
Scylla can handle 1M/s events with a simple data model quite easily. The api to query is CQL, we have REST api but that's for control/monitoring
Cassandra is quite capable of the task, in a highly available way, given appropriate scaling of the system. Remember that updates are only inserts, and that efficient retrieval is only by key (which can be a complex key). Talking of keys, make sure that the keys are well distributed.
i love syclla for pet projects however it's license which is based on server model is an issue. thus i recommend cassandra
By 55M do you mean 55 million entity changes per 2 minutes? It is relatively high, means almost 460k per second. If I had to choose between Scylla or Cassandra, I would opt for Scylla as it is promising better performance for simple operations. However, maybe it would be worth to consider yet another alternative technology. Take into consideration required consistency, reliability and high availability and you may realize that there are more suitable once. Rest API should not be the main driver, because you can always develop the API yourself, if not supported by given technology.
Fauna is a serverless database where you store data as JSON. Also, you have build in a HTTP GraphQL interface with a full authentication & authorization layer. That means you can skip your Backend and call it directly from the Frontend. With the power, that you can write data transformation function within Fauna with her own language called FQL, we're getting a blazing fast application.
Also, Fauna takes care about scaling and backups (All data are sharded on three different locations on the globe). That means we can fully focus on writing business logic and don't have to worry anymore about infrastructure.
After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.
Here's why you should not use Couchbase
Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types
N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.
Community support I posted several problems on the forum and I never once received a useful answer
Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great
Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.
Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.
Minimum requirements
The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600
. We achieved better performance using a $16
MongoDB instance on the Mongo Atlas Cloud
writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.
Couchbase UI
The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code
Consumes too much RAM
Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents
! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB
Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.
We implemented our first large scale EPR application from naologic.com using CouchDB .
Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.
It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.
Pros of Cassandra
- Distributed119
- High performance98
- High availability81
- Easy scalability74
- Replication53
- Reliable26
- Multi datacenter deployments26
- Schema optional10
- OLTP9
- Open source8
- Workload separation (via MDC)2
- Fast1
Pros of Couchbase
- High performance18
- Flexible data model, easy scalability, extremely fast18
- Mobile app support9
- You can query it with Ansi-92 SQL7
- All nodes can be read/write6
- Equal nodes in cluster, allowing fast, flexible changes5
- Both a key-value store and document (JSON) db5
- Open source, community and enterprise editions5
- Automatic configuration of sharding4
- Local cache capability4
- Easy setup3
- Linearly scalable, useful to large number of tps3
- Easy cluster administration3
- Cross data center replication3
- SDKs in popular programming languages3
- Elasticsearch connector3
- Web based management, query and monitoring panel3
- Map reduce views2
- DBaaS available2
- NoSQL2
- Buckets, Scopes, Collections & Documents1
- FTS + SQL together1
Sign up to add or upvote prosMake informed product decisions
Cons of Cassandra
- Reliability of replication3
- Size1
- Updates1
Cons of Couchbase
- Terrible query language3