Alternatives to CMake logo

Alternatives to CMake

Make, Bazel, Apache Maven, Git, and GitHub are the most popular alternatives and competitors to CMake.
3.8K
292
+ 1
1

What is CMake and what are its top alternatives?

CMake is a popular open-source, cross-platform build system that is widely used in the software development industry. It enables developers to manage the build process of their projects in a simple and efficient manner by generating build files for different platforms and environments. Key features of CMake include support for multiple compilers, build directories, and custom commands. However, some limitations of CMake include its complex syntax, steep learning curve, and lack of support for certain advanced features like package management.

  1. Meson: Meson is a fast and user-friendly build system that focuses on simplicity and performance. It has a concise build definition syntax, built-in support for various languages, and integrated test support. Pros of Meson include its fast build times and easy-to-read configuration files, while cons include limited support for complex build tasks.

  2. Bazel: Bazel is a powerful build tool from Google that emphasizes build reproducibility and scalability. It supports multiple programming languages, caching mechanisms for efficient builds, and a flexible configuration system. Pros of Bazel include its advanced build optimization features and support for large-scale projects, while cons include a steeper learning curve and complex setup process.

  3. QMake: QMake is a build system designed for Qt-based projects that offers a simple and intuitive way to manage project builds. It automatically generates Makefiles based on project files, supports conditional compilation, and integrates seamlessly with the Qt framework. Pros of QMake include its ease of use and tight integration with Qt, while cons include limited customization options and lack of support for non-Qt projects.

  4. Ninja: Ninja is a small and fast build system that focuses on build speed and efficiency. It uses a simple build file format, parallelizes build tasks for faster compilation, and integrates well with other build systems like CMake. Pros of Ninja include its speed and low overhead, while cons include limited features compared to more comprehensive build systems.

  5. Premake: Premake is a build configuration tool that aims to simplify the build process for developers. It uses a Lua-based configuration script, supports multiple platforms and toolchains, and can generate project files for various IDEs. Pros of Premake include its flexibility and ease of use, while cons include limited community support and documentation.

  6. SCons: SCons is a software construction tool that uses Python scripts to define build tasks and dependencies. It supports automated dependency tracking, parallel builds, and customizable build options. Pros of SCons include its extensibility and flexibility, while cons include slower build times compared to more optimized build systems.

  7. Gradle: Gradle is a powerful build automation tool that is commonly used in the Java ecosystem. It offers a declarative build script syntax, supports incremental builds, and integrates with popular IDEs like IntelliJ IDEA and Android Studio. Pros of Gradle include its flexibility and extensibility, while cons include longer build times compared to more lightweight build systems.

  8. Make: Make is a classic build tool that has been widely used in Unix-based systems for managing software builds. It uses makefiles to define build rules and dependencies, supports parallel builds, and is highly customizable. Pros of Make include its simplicity and widespread adoption, while cons include the need for manual configuration and lack of advanced features.

  9. Buck: Buck is a build system developed by Facebook that focuses on fast and reliable builds for large-scale projects. It offers fine-grained build rules, caching mechanisms for incremental builds, and support for multiple languages and platforms. Pros of Buck include its speed and efficiency, while cons include a more complex setup process compared to simpler build tools.

  10. CMakeTools: CMakeTools is an extension for Visual Studio Code that provides enhanced support for CMake projects. It offers features like IntelliSense code completion, build tasks integration, and debug support for CMake projects. Pros of CMakeTools include its seamless integration with Visual Studio Code, while cons include limited features compared to standalone build systems.

Top Alternatives to CMake

  • Make
    Make

    The GNU Compiler Collection and GNU Toolchain (Binutils, GDB, GLIBC)

  • Bazel
    Bazel

    Bazel is a build tool that builds code quickly and reliably. It is used to build the majority of Google's software, and thus it has been designed to handle build problems present in Google's development environment. ...

  • Apache Maven
    Apache Maven

    Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Visual Studio Code
    Visual Studio Code

    Build and debug modern web and cloud applications. Code is free and available on your favorite platform - Linux, Mac OSX, and Windows. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • npm
    npm

    npm is the command-line interface to the npm ecosystem. It is battle-tested, surprisingly flexible, and used by hundreds of thousands of JavaScript developers every day. ...

CMake alternatives & related posts

Make logo

Make

303
1
The GNU Compiler Collection and GNU Toolchain (Binutils, GDB, GLIBC)
303
1
PROS OF MAKE
  • 1
    No-nonsense approach to builds. Just works
  • 0
    One-line Execution
CONS OF MAKE
    Be the first to leave a con

    related Make posts

    Bazel logo

    Bazel

    305
    133
    Build and test software of any size, quickly and reliably
    305
    133
    PROS OF BAZEL
    • 28
      Fast
    • 20
      Deterministic incremental builds
    • 17
      Correct
    • 16
      Multi-language
    • 14
      Enforces declared inputs/outputs
    • 10
      High-level build language
    • 9
      Scalable
    • 5
      Multi-platform support
    • 5
      Sandboxing
    • 4
      Dependency management
    • 2
      Windows Support
    • 2
      Flexible
    • 1
      Android Studio integration
    CONS OF BAZEL
    • 3
      No Windows Support
    • 2
      Bad IntelliJ support
    • 1
      Poor windows support for some languages
    • 1
      Constant breaking changes
    • 1
      Learning Curve
    • 1
      Lack of Documentation

    related Bazel posts

    Joshua Dean Küpper
    CEO at Scrayos UG (haftungsbeschränkt) · | 2 upvotes · 338.9K views

    All Java-Projects are compiled using Apache Maven. We prefer it over Apache Ant and Gradle as it combines lightweightness with feature-richness and offers basically all we can imagine from a software project-management tool and more. We're open however to re-evaluate this decision in favor of Gradle or Bazel in the future if we feel like we're missing out on anything.

    See more
    Apache Maven logo

    Apache Maven

    2.8K
    414
    Apache build manager for Java projects.
    2.8K
    414
    PROS OF APACHE MAVEN
    • 138
      Dependency management
    • 70
      Necessary evil
    • 60
      I’d rather code my app, not my build
    • 48
      Publishing packaged artifacts
    • 43
      Convention over configuration
    • 18
      Modularisation
    • 11
      Consistency across builds
    • 6
      Prevents overengineering using scripting
    • 4
      Runs Tests
    • 4
      Lot of cool plugins
    • 3
      Extensible
    • 2
      Hard to customize
    • 2
      Runs on Linux
    • 1
      Runs on OS X
    • 1
      Slow incremental build
    • 1
      Inconsistent buillds
    • 1
      Undeterminisc
    • 1
      Good IDE tooling
    CONS OF APACHE MAVEN
    • 6
      Complex
    • 1
      Inconsistent buillds
    • 0
      Not many plugin-alternatives

    related Apache Maven posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Ganesa Vijayakumar
    Full Stack Coder | Technical Architect · | 19 upvotes · 5.5M views

    I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

    I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

    As per my work experience and knowledge, I have chosen the followings stacks to this mission.

    UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

    Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

    Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

    Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

    Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

    Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

    Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

    Happy Coding! Suggestions are welcome! :)

    Thanks, Ganesa

    See more
    Git logo

    Git

    297.7K
    6.6K
    Fast, scalable, distributed revision control system
    297.7K
    6.6K
    PROS OF GIT
    • 1.4K
      Distributed version control system
    • 1.1K
      Efficient branching and merging
    • 959
      Fast
    • 845
      Open source
    • 726
      Better than svn
    • 368
      Great command-line application
    • 306
      Simple
    • 291
      Free
    • 232
      Easy to use
    • 222
      Does not require server
    • 27
      Distributed
    • 22
      Small & Fast
    • 18
      Feature based workflow
    • 15
      Staging Area
    • 13
      Most wide-spread VSC
    • 11
      Role-based codelines
    • 11
      Disposable Experimentation
    • 7
      Frictionless Context Switching
    • 6
      Data Assurance
    • 5
      Efficient
    • 4
      Just awesome
    • 3
      Github integration
    • 3
      Easy branching and merging
    • 2
      Compatible
    • 2
      Flexible
    • 2
      Possible to lose history and commits
    • 1
      Rebase supported natively; reflog; access to plumbing
    • 1
      Light
    • 1
      Team Integration
    • 1
      Fast, scalable, distributed revision control system
    • 1
      Easy
    • 1
      Flexible, easy, Safe, and fast
    • 1
      CLI is great, but the GUI tools are awesome
    • 1
      It's what you do
    • 0
      Phinx
    CONS OF GIT
    • 16
      Hard to learn
    • 11
      Inconsistent command line interface
    • 9
      Easy to lose uncommitted work
    • 8
      Worst documentation ever possibly made
    • 5
      Awful merge handling
    • 3
      Unexistent preventive security flows
    • 3
      Rebase hell
    • 2
      Ironically even die-hard supporters screw up badly
    • 2
      When --force is disabled, cannot rebase
    • 1
      Doesn't scale for big data

    related Git posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    GitHub logo

    GitHub

    286.2K
    10.3K
    Powerful collaboration, review, and code management for open source and private development projects
    286.2K
    10.3K
    PROS OF GITHUB
    • 1.8K
      Open source friendly
    • 1.5K
      Easy source control
    • 1.3K
      Nice UI
    • 1.1K
      Great for team collaboration
    • 867
      Easy setup
    • 504
      Issue tracker
    • 487
      Great community
    • 483
      Remote team collaboration
    • 449
      Great way to share
    • 442
      Pull request and features planning
    • 147
      Just works
    • 132
      Integrated in many tools
    • 122
      Free Public Repos
    • 116
      Github Gists
    • 113
      Github pages
    • 83
      Easy to find repos
    • 62
      Open source
    • 60
      Easy to find projects
    • 60
      It's free
    • 56
      Network effect
    • 49
      Extensive API
    • 43
      Organizations
    • 42
      Branching
    • 34
      Developer Profiles
    • 32
      Git Powered Wikis
    • 30
      Great for collaboration
    • 24
      It's fun
    • 23
      Clean interface and good integrations
    • 22
      Community SDK involvement
    • 20
      Learn from others source code
    • 16
      Because: Git
    • 14
      It integrates directly with Azure
    • 10
      Standard in Open Source collab
    • 10
      Newsfeed
    • 8
      Fast
    • 8
      Beautiful user experience
    • 8
      It integrates directly with Hipchat
    • 7
      Easy to discover new code libraries
    • 6
      Smooth integration
    • 6
      Integrations
    • 6
      Graphs
    • 6
      Nice API
    • 6
      It's awesome
    • 6
      Cloud SCM
    • 5
      Quick Onboarding
    • 5
      Remarkable uptime
    • 5
      CI Integration
    • 5
      Reliable
    • 5
      Hands down best online Git service available
    • 4
      Version Control
    • 4
      Unlimited Public Repos at no cost
    • 4
      Simple but powerful
    • 4
      Loved by developers
    • 4
      Free HTML hosting
    • 4
      Uses GIT
    • 4
      Security options
    • 4
      Easy to use and collaborate with others
    • 3
      Easy deployment via SSH
    • 3
      Ci
    • 3
      IAM
    • 3
      Nice to use
    • 2
      Easy and efficient maintainance of the projects
    • 2
      Beautiful
    • 2
      Self Hosted
    • 2
      Issues tracker
    • 2
      Easy source control and everything is backed up
    • 2
      Never dethroned
    • 2
      All in one development service
    • 2
      Good tools support
    • 2
      Free HTML hostings
    • 2
      IAM integration
    • 2
      Very Easy to Use
    • 2
      Easy to use
    • 2
      Leads the copycats
    • 2
      Free private repos
    • 1
      Profound
    • 1
      Dasf
    CONS OF GITHUB
    • 55
      Owned by micrcosoft
    • 38
      Expensive for lone developers that want private repos
    • 15
      Relatively slow product/feature release cadence
    • 10
      API scoping could be better
    • 9
      Only 3 collaborators for private repos
    • 4
      Limited featureset for issue management
    • 3
      Does not have a graph for showing history like git lens
    • 2
      GitHub Packages does not support SNAPSHOT versions
    • 1
      No multilingual interface
    • 1
      Takes a long time to commit
    • 1
      Expensive

    related GitHub posts

    Johnny Bell

    I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

    I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

    I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

    Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

    Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

    With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

    If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

    See more

    Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

    Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

    Check Out My Architecture: CLICK ME

    Check out the GitHub repo attached

    See more
    Visual Studio Code logo

    Visual Studio Code

    179.6K
    2.3K
    Build and debug modern web and cloud applications, by Microsoft
    179.6K
    2.3K
    PROS OF VISUAL STUDIO CODE
    • 340
      Powerful multilanguage IDE
    • 308
      Fast
    • 193
      Front-end develop out of the box
    • 158
      Support TypeScript IntelliSense
    • 142
      Very basic but free
    • 126
      Git integration
    • 106
      Intellisense
    • 78
      Faster than Atom
    • 53
      Better ui, easy plugins, and nice git integration
    • 45
      Great Refactoring Tools
    • 44
      Good Plugins
    • 42
      Terminal
    • 38
      Superb markdown support
    • 36
      Open Source
    • 35
      Extensions
    • 26
      Awesome UI
    • 26
      Large & up-to-date extension community
    • 24
      Powerful and fast
    • 22
      Portable
    • 18
      Best code editor
    • 18
      Best editor
    • 17
      Easy to get started with
    • 15
      Lots of extensions
    • 15
      Good for begginers
    • 15
      Crossplatform
    • 15
      Built on Electron
    • 14
      Extensions for everything
    • 14
      Open, cross-platform, fast, monthly updates
    • 14
      All Languages Support
    • 13
      Easy to use and learn
    • 12
      "fast, stable & easy to use"
    • 12
      Extensible
    • 11
      Ui design is great
    • 11
      Totally customizable
    • 11
      Git out of the box
    • 11
      Useful for begginer
    • 11
      Faster edit for slow computer
    • 10
      SSH support
    • 10
      Great community
    • 10
      Fast Startup
    • 9
      Works With Almost EveryThing You Need
    • 9
      Great language support
    • 9
      Powerful Debugger
    • 9
      It has terminal and there are lots of shortcuts in it
    • 8
      Can compile and run .py files
    • 8
      Python extension is fast
    • 7
      Features rich
    • 7
      Great document formater
    • 6
      He is not Michael
    • 6
      Extension Echosystem
    • 6
      She is not Rachel
    • 6
      Awesome multi cursor support
    • 5
      VSCode.pro Course makes it easy to learn
    • 5
      Language server client
    • 5
      SFTP Workspace
    • 5
      Very proffesional
    • 5
      Easy azure
    • 4
      Has better support and more extentions for debugging
    • 4
      Supports lots of operating systems
    • 4
      Excellent as git difftool and mergetool
    • 4
      Virtualenv integration
    • 3
      Better autocompletes than Atom
    • 3
      Has more than enough languages for any developer
    • 3
      'batteries included'
    • 3
      More tools to integrate with vs
    • 3
      Emmet preinstalled
    • 2
      VS Code Server: Browser version of VS Code
    • 2
      CMake support with autocomplete
    • 2
      Microsoft
    • 2
      Customizable
    • 2
      Light
    • 2
      Big extension marketplace
    • 2
      Fast and ruby is built right in
    • 1
      File:///C:/Users/ydemi/Downloads/yuksel_demirkaya_webpa
    CONS OF VISUAL STUDIO CODE
    • 46
      Slow startup
    • 29
      Resource hog at times
    • 20
      Poor refactoring
    • 13
      Poor UI Designer
    • 11
      Weak Ui design tools
    • 10
      Poor autocomplete
    • 8
      Super Slow
    • 8
      Huge cpu usage with few installed extension
    • 8
      Microsoft sends telemetry data
    • 7
      Poor in PHP
    • 6
      It's MicroSoft
    • 3
      Poor in Python
    • 3
      No Built in Browser Preview
    • 3
      No color Intergrator
    • 3
      Very basic for java development and buggy at times
    • 3
      No built in live Preview
    • 3
      Electron
    • 2
      Bad Plugin Architecture
    • 2
      Powered by Electron
    • 1
      Terminal does not identify path vars sometimes
    • 1
      Slow C++ Language Server

    related Visual Studio Code posts

    Yshay Yaacobi

    Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

    Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

    After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

    See more
    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Docker logo

    Docker

    174.6K
    3.9K
    Enterprise Container Platform for High-Velocity Innovation.
    174.6K
    3.9K
    PROS OF DOCKER
    • 823
      Rapid integration and build up
    • 692
      Isolation
    • 521
      Open source
    • 505
      Testa­bil­i­ty and re­pro­ducibil­i­ty
    • 460
      Lightweight
    • 218
      Standardization
    • 185
      Scalable
    • 106
      Upgrading / down­grad­ing / ap­pli­ca­tion versions
    • 88
      Security
    • 85
      Private paas environments
    • 34
      Portability
    • 26
      Limit resource usage
    • 17
      Game changer
    • 16
      I love the way docker has changed virtualization
    • 14
      Fast
    • 12
      Concurrency
    • 8
      Docker's Compose tools
    • 6
      Easy setup
    • 6
      Fast and Portable
    • 5
      Because its fun
    • 4
      Makes shipping to production very simple
    • 3
      Highly useful
    • 3
      It's dope
    • 2
      Package the environment with the application
    • 2
      Super
    • 2
      Open source and highly configurable
    • 2
      Simplicity, isolation, resource effective
    • 2
      MacOS support FAKE
    • 2
      Its cool
    • 2
      Does a nice job hogging memory
    • 2
      Docker hub for the FTW
    • 2
      HIgh Throughput
    • 2
      Very easy to setup integrate and build
    • 0
      Asdfd
    CONS OF DOCKER
    • 8
      New versions == broken features
    • 6
      Unreliable networking
    • 6
      Documentation not always in sync
    • 4
      Moves quickly
    • 3
      Not Secure

    related Docker posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 10M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    npm logo

    npm

    124.6K
    1.6K
    The package manager for JavaScript.
    124.6K
    1.6K
    PROS OF NPM
    • 647
      Best package management system for javascript
    • 382
      Open-source
    • 327
      Great community
    • 148
      More packages than rubygems, pypi, or packagist
    • 112
      Nice people matter
    • 6
      As fast as yarn but really free of facebook
    • 6
      Audit feature
    • 4
      Good following
    • 1
      Super fast
    • 1
      Stability
    CONS OF NPM
    • 5
      Problems with lockfiles
    • 5
      Bad at package versioning and being deterministic
    • 3
      Node-gyp takes forever
    • 1
      Super slow

    related npm posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 5.2M views

    Our whole Node.js backend stack consists of the following tools:

    • Lerna as a tool for multi package and multi repository management
    • npm as package manager
    • NestJS as Node.js framework
    • TypeScript as programming language
    • ExpressJS as web server
    • Swagger UI for visualizing and interacting with the API’s resources
    • Postman as a tool for API development
    • TypeORM as object relational mapping layer
    • JSON Web Token for access token management

    The main reason we have chosen Node.js over PHP is related to the following artifacts:

    • Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
    • Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
    • A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
    • Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
    See more
    Johnny Bell

    So when starting a new project you generally have your go to tools to get your site up and running locally, and some scripts to build out a production version of your site. Create React App is great for that, however for my projects I feel as though there is to much bloat in Create React App and if I use it, then I'm tied to React, which I love but if I want to switch it up to Vue or something I want that flexibility.

    So to start everything up and running I clone my personal Webpack boilerplate - This is still in Webpack 3, and does need some updating but gets the job done for now. So given the name of the repo you may have guessed that yes I am using Webpack as my bundler I use Webpack because it is so powerful, and even though it has a steep learning curve once you get it, its amazing.

    The next thing I do is make sure my machine has Node.js configured and the right version installed then run Yarn. I decided to use Yarn because when I was building out this project npm had some shortcomings such as no .lock file. I could probably move from Yarn to npm but I don't really see any point really.

    I use Babel to transpile all of my #ES6 to #ES5 so the browser can read it, I love Babel and to be honest haven't looked up any other transpilers because Babel is amazing.

    Finally when developing I have Prettier setup to make sure all my code is clean and uniform across all my JS files, and ESLint to make sure I catch any errors or code that could be optimized.

    I'm really happy with this stack for my local env setup, and I'll probably stick with it for a while.

    See more