Alternatives to Gradle logo

Alternatives to Gradle

Apache Ant, Jenkins, Groovy, Apache Maven, and Bazel are the most popular alternatives and competitors to Gradle.
17.4K
254

What is Gradle and what are its top alternatives?

Gradle is a build tool with a focus on build automation and support for multi-language development. If you are building, testing, publishing, and deploying software on any platform, Gradle offers a flexible model that can support the entire development lifecycle from compiling and packaging code to publishing web sites.
Gradle is a tool in the Java Build Tools category of a tech stack.
Gradle is an open source tool with 16.9K GitHub stars and 4.7K GitHub forks. Here’s a link to Gradle's open source repository on GitHub

Top Alternatives to Gradle

  • Apache Ant
    Apache Ant

    Ant is a Java-based build tool. In theory, it is kind of like Make, without Make's wrinkles and with the full portability of pure Java code. ...

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • Groovy
    Groovy

    It is a powerful multi-faceted programming language for the JVM platform. It supports a spectrum of programming styles incorporating features from dynamic languages such as optional and duck typing, but also static compilation and static type checking at levels similar to or greater than Java through its extensible static type checker. It aims to greatly increase developer productivity with many powerful features but also a concise, familiar and easy to learn syntax. ...

  • Apache Maven
    Apache Maven

    Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...

  • Bazel
    Bazel

    Bazel is a build tool that builds code quickly and reliably. It is used to build the majority of Google's software, and thus it has been designed to handle build problems present in Google's development environment. ...

  • SBT
    SBT

    It is similar to Java's Maven and Ant. Its main features are: Native support for compiling Scala code and integrating with many Scala test frameworks. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

Gradle alternatives & related posts

Apache Ant logo

Apache Ant

181
151
7
Java based build tool
181
151
+ 1
7
PROS OF APACHE ANT
  • 4
    Flexible
  • 1
    Simple
  • 1
    Easy to learn
  • 1
    Easy to write own java-build-hooks
CONS OF APACHE ANT
  • 1
    Slow
  • 1
    Old and not widely used anymore

related Apache Ant posts

Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 2 upvotes · 337.6K views

All Java-Projects are compiled using Apache Maven. We prefer it over Apache Ant and Gradle as it combines lightweightness with feature-richness and offers basically all we can imagine from a software project-management tool and more. We're open however to re-evaluate this decision in favor of Gradle or Bazel in the future if we feel like we're missing out on anything.

See more
Jenkins logo

Jenkins

58.3K
49.8K
2.2K
An extendable open source continuous integration server
58.3K
49.8K
+ 1
2.2K
PROS OF JENKINS
  • 523
    Hosted internally
  • 469
    Free open source
  • 318
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 211
    Rich set of plugins with good documentation
  • 111
    Has support for build pipelines
  • 68
    Easy setup
  • 66
    It is open-source
  • 53
    Workflow plugin
  • 13
    Configuration as code
  • 12
    Very powerful tool
  • 11
    Many Plugins
  • 10
    Continuous Integration
  • 10
    Great flexibility
  • 9
    Git and Maven integration is better
  • 8
    100% free and open source
  • 7
    Github integration
  • 7
    Slack Integration (plugin)
  • 6
    Easy customisation
  • 6
    Self-hosted GitLab Integration (plugin)
  • 5
    Docker support
  • 5
    Pipeline API
  • 4
    Fast builds
  • 4
    Platform idnependency
  • 4
    Hosted Externally
  • 4
    Excellent docker integration
  • 3
    It`w worked
  • 3
    Customizable
  • 3
    Can be run as a Docker container
  • 3
    It's Everywhere
  • 3
    JOBDSL
  • 3
    AWS Integration
  • 2
    Easily extendable with seamless integration
  • 2
    PHP Support
  • 2
    Build PR Branch Only
  • 2
    NodeJS Support
  • 2
    Ruby/Rails Support
  • 2
    Universal controller
  • 2
    Loose Coupling
CONS OF JENKINS
  • 13
    Workarounds needed for basic requirements
  • 10
    Groovy with cumbersome syntax
  • 8
    Plugins compatibility issues
  • 7
    Lack of support
  • 7
    Limited abilities with declarative pipelines
  • 5
    No YAML syntax
  • 4
    Too tied to plugins versions

related Jenkins posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Groovy logo

Groovy

2.1K
778
212
A multi-faceted language for the Java platform
2.1K
778
+ 1
212
PROS OF GROOVY
  • 44
    Java platform
  • 33
    Much more productive than java
  • 29
    Concise and readable
  • 28
    Very little code needed for complex tasks
  • 22
    Dynamic language
  • 13
    Nice dynamic syntax for the jvm
  • 9
    Very fast
  • 7
    Can work with JSON as an object
  • 7
    Easy to setup
  • 6
    Supports closures (lambdas)
  • 6
    Literal Collections
  • 3
    Syntactic sugar
  • 3
    Optional static typing
  • 2
    Developer Friendly
CONS OF GROOVY
  • 3
    Groovy Code can be slower than Java Code
  • 1
    Absurd syntax
  • 1
    Objects cause stateful/heap mess

related Groovy posts

Alex A

Some may wonder why did we choose Grails ? Really good question :) We spent quite some time to evaluate what framework to go with and the battle was between Play Scala and Grails ( Groovy ). We have enough experience with both and, to be honest, I absolutely in love with Scala; however, the tipping point for us was the potential speed of development. Grails allows much faster development pace than Play , and as of right now this is the most important parameter. We might convert later though. Also, worth mentioning, by default Grails comes with Gradle as a build tool, so why change?

See more

Presently, a web-based ERP is developed in Groovy on Grails. Now the ERP is getting revamped with more functionalities. Is it advisable to continue with the same software and framework or try something new especially Node.js over ExpressJS?

See more
Apache Maven logo

Apache Maven

2.8K
1.7K
414
Apache build manager for Java projects.
2.8K
1.7K
+ 1
414
PROS OF APACHE MAVEN
  • 138
    Dependency management
  • 70
    Necessary evil
  • 60
    I’d rather code my app, not my build
  • 48
    Publishing packaged artifacts
  • 43
    Convention over configuration
  • 18
    Modularisation
  • 11
    Consistency across builds
  • 6
    Prevents overengineering using scripting
  • 4
    Runs Tests
  • 4
    Lot of cool plugins
  • 3
    Extensible
  • 2
    Hard to customize
  • 2
    Runs on Linux
  • 1
    Runs on OS X
  • 1
    Slow incremental build
  • 1
    Inconsistent buillds
  • 1
    Undeterminisc
  • 1
    Good IDE tooling
CONS OF APACHE MAVEN
  • 6
    Complex
  • 1
    Inconsistent buillds
  • 0
    Not many plugin-alternatives

related Apache Maven posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Ganesa Vijayakumar
Full Stack Coder | Technical Architect · | 19 upvotes · 5.3M views

I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

As per my work experience and knowledge, I have chosen the followings stacks to this mission.

UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

Happy Coding! Suggestions are welcome! :)

Thanks, Ganesa

See more
Bazel logo

Bazel

303
570
133
Build and test software of any size, quickly and reliably
303
570
+ 1
133
PROS OF BAZEL
  • 28
    Fast
  • 20
    Deterministic incremental builds
  • 17
    Correct
  • 16
    Multi-language
  • 14
    Enforces declared inputs/outputs
  • 10
    High-level build language
  • 9
    Scalable
  • 5
    Multi-platform support
  • 5
    Sandboxing
  • 4
    Dependency management
  • 2
    Windows Support
  • 2
    Flexible
  • 1
    Android Studio integration
CONS OF BAZEL
  • 3
    No Windows Support
  • 2
    Bad IntelliJ support
  • 1
    Poor windows support for some languages
  • 1
    Constant breaking changes
  • 1
    Learning Curve
  • 1
    Lack of Documentation

related Bazel posts

Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 2 upvotes · 337.6K views

All Java-Projects are compiled using Apache Maven. We prefer it over Apache Ant and Gradle as it combines lightweightness with feature-richness and offers basically all we can imagine from a software project-management tool and more. We're open however to re-evaluate this decision in favor of Gradle or Bazel in the future if we feel like we're missing out on anything.

See more
SBT logo

SBT

165
118
11
An open source build tool for Scala and Java projects
165
118
+ 1
11
PROS OF SBT
  • 1
    Support for publishing artifacts in Maven, Ivy formats
  • 1
    Works across Windows, Linux and MacOS
  • 1
    Support for Zinc and BSP
  • 1
    No Breaking Changes
  • 1
    Best for Mono-Repo and Multi-Project builds
  • 1
    Preference option to build Mix Scala-Java Projects
  • 1
    IntelliJ support
  • 1
    Continuous compilation
  • 1
    Flexible
  • 1
    Dependency manageemnt
  • 1
    Incremental Builds
CONS OF SBT
  • 1
    Learning Curve is a bit steep

related SBT posts

Shared insights
on
ScalaScalaSBTSBTGradleGradle

What are the advantages of using Gradle over SBT for Scala projects? Currently, I am doing POC between Gradle and SBT.

See more
Git logo

Git

296.9K
178.2K
6.6K
Fast, scalable, distributed revision control system
296.9K
178.2K
+ 1
6.6K
PROS OF GIT
  • 1.4K
    Distributed version control system
  • 1.1K
    Efficient branching and merging
  • 959
    Fast
  • 845
    Open source
  • 726
    Better than svn
  • 368
    Great command-line application
  • 306
    Simple
  • 291
    Free
  • 232
    Easy to use
  • 222
    Does not require server
  • 27
    Distributed
  • 22
    Small & Fast
  • 18
    Feature based workflow
  • 15
    Staging Area
  • 13
    Most wide-spread VSC
  • 11
    Role-based codelines
  • 11
    Disposable Experimentation
  • 7
    Frictionless Context Switching
  • 6
    Data Assurance
  • 5
    Efficient
  • 4
    Just awesome
  • 3
    Github integration
  • 3
    Easy branching and merging
  • 2
    Compatible
  • 2
    Flexible
  • 2
    Possible to lose history and commits
  • 1
    Rebase supported natively; reflog; access to plumbing
  • 1
    Light
  • 1
    Team Integration
  • 1
    Fast, scalable, distributed revision control system
  • 1
    Easy
  • 1
    Flexible, easy, Safe, and fast
  • 1
    CLI is great, but the GUI tools are awesome
  • 1
    It's what you do
  • 0
    Phinx
CONS OF GIT
  • 16
    Hard to learn
  • 11
    Inconsistent command line interface
  • 9
    Easy to lose uncommitted work
  • 8
    Worst documentation ever possibly made
  • 5
    Awful merge handling
  • 3
    Unexistent preventive security flows
  • 3
    Rebase hell
  • 2
    Ironically even die-hard supporters screw up badly
  • 2
    When --force is disabled, cannot rebase
  • 1
    Doesn't scale for big data

related Git posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
GitHub logo

GitHub

285.1K
249K
10.3K
Powerful collaboration, review, and code management for open source and private development projects
285.1K
249K
+ 1
10.3K
PROS OF GITHUB
  • 1.8K
    Open source friendly
  • 1.5K
    Easy source control
  • 1.3K
    Nice UI
  • 1.1K
    Great for team collaboration
  • 867
    Easy setup
  • 504
    Issue tracker
  • 487
    Great community
  • 483
    Remote team collaboration
  • 449
    Great way to share
  • 442
    Pull request and features planning
  • 147
    Just works
  • 132
    Integrated in many tools
  • 122
    Free Public Repos
  • 116
    Github Gists
  • 113
    Github pages
  • 83
    Easy to find repos
  • 62
    Open source
  • 60
    Easy to find projects
  • 60
    It's free
  • 56
    Network effect
  • 49
    Extensive API
  • 43
    Organizations
  • 42
    Branching
  • 34
    Developer Profiles
  • 32
    Git Powered Wikis
  • 30
    Great for collaboration
  • 24
    It's fun
  • 23
    Clean interface and good integrations
  • 22
    Community SDK involvement
  • 20
    Learn from others source code
  • 16
    Because: Git
  • 14
    It integrates directly with Azure
  • 10
    Standard in Open Source collab
  • 10
    Newsfeed
  • 8
    Fast
  • 8
    Beautiful user experience
  • 8
    It integrates directly with Hipchat
  • 7
    Easy to discover new code libraries
  • 6
    Smooth integration
  • 6
    Integrations
  • 6
    Graphs
  • 6
    Nice API
  • 6
    It's awesome
  • 6
    Cloud SCM
  • 5
    Quick Onboarding
  • 5
    Remarkable uptime
  • 5
    CI Integration
  • 5
    Reliable
  • 5
    Hands down best online Git service available
  • 4
    Version Control
  • 4
    Unlimited Public Repos at no cost
  • 4
    Simple but powerful
  • 4
    Loved by developers
  • 4
    Free HTML hosting
  • 4
    Uses GIT
  • 4
    Security options
  • 4
    Easy to use and collaborate with others
  • 3
    Easy deployment via SSH
  • 3
    Ci
  • 3
    IAM
  • 3
    Nice to use
  • 2
    Easy and efficient maintainance of the projects
  • 2
    Beautiful
  • 2
    Self Hosted
  • 2
    Issues tracker
  • 2
    Easy source control and everything is backed up
  • 2
    Never dethroned
  • 2
    All in one development service
  • 2
    Good tools support
  • 2
    Free HTML hostings
  • 2
    IAM integration
  • 2
    Very Easy to Use
  • 2
    Easy to use
  • 2
    Leads the copycats
  • 2
    Free private repos
  • 1
    Profound
  • 1
    Dasf
CONS OF GITHUB
  • 55
    Owned by micrcosoft
  • 38
    Expensive for lone developers that want private repos
  • 15
    Relatively slow product/feature release cadence
  • 10
    API scoping could be better
  • 9
    Only 3 collaborators for private repos
  • 4
    Limited featureset for issue management
  • 3
    Does not have a graph for showing history like git lens
  • 2
    GitHub Packages does not support SNAPSHOT versions
  • 1
    No multilingual interface
  • 1
    Takes a long time to commit
  • 1
    Expensive

related GitHub posts

Johnny Bell

I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

See more

Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

Check Out My Architecture: CLICK ME

Check out the GitHub repo attached

See more