Alternatives to Apache Ant logo

Alternatives to Apache Ant

Eclipse, Gradle, Apache Maven, Apache Tomcat, and Jenkins are the most popular alternatives and competitors to Apache Ant.
181
7

What is Apache Ant and what are its top alternatives?

Apache Ant is a Java-based build tool with automation capabilities primarily used for building and deploying Java projects. It uses XML files to define build scripts and offers a wide range of built-in tasks for compiling, testing, packaging, and deploying applications. While Apache Ant is flexible and extensible, its XML syntax can be verbose and complex, making it difficult for beginners to grasp.

  1. Gradle: Gradle is a powerful build automation tool that offers a more concise and flexible approach compared to Apache Ant. It uses Groovy-based build scripts, allowing for easier customization and better dependency management. Pros include support for multiple programming languages and faster build times, while cons include a steeper learning curve for beginners.

  2. Maven: Maven is a popular build automation tool that focuses on convention over configuration. It simplifies project setup and dependencies management by providing a standard build lifecycle. Key features include project inheritance, plugin-based architecture, and centralized dependency management. Pros include a large plugin ecosystem and easy integration with CI/CD pipelines, while cons include a more rigid project structure.

  3. Bazel: Bazel is a build system from Google that emphasizes correctness and reproducibility. It is designed for large-scale projects and supports multiple languages. Key features include incremental builds, remote caching, and a powerful dependency graph. Pros include fast and reliable builds, as well as support for monorepos, while cons include a steep learning curve and limited support for legacy build systems.

  4. Make: Make is a classic build automation tool that uses Makefiles to define build tasks and dependencies. It is widely used in Unix-based systems for compiling software projects. Key features include parallel execution, automatic dependency tracking, and a simple syntax. Pros include widespread adoption and fast builds, while cons include platform-specific behavior and lack of built-in support for complex tasks.

  5. CMake: CMake is a cross-platform build system that generates native build scripts for different platforms and compilers. It simplifies the build process for C and C++ projects by providing a high-level scripting language. Key features include out-of-source builds, configurable build options, and support for different build tools. Pros include portability and ease of use, while cons include limited support for advanced build workflows.

  6. SCons: SCons is a software construction tool written in Python that uses Python scripts for defining build configurations. It offers a flexible and extensible approach to building software projects. Key features include automatic dependency analysis, parallel builds, and integrated testing support. Pros include a simple and readable syntax, as well as support for custom build rules, while cons include slower build times compared to other build tools.

  7. Buck: Buck is a build system developed by Facebook for mobile and web applications. It prioritizes fast builds and incremental compilation to optimize developer productivity. Key features include fine-grained build caching, strict dependency management, and support for multiple languages. Pros include fast build times and deterministic builds, while cons include a complex configuration setup and limited community support.

  8. SBT: SBT is a build tool for Scala and Java projects that combines build definitions with an interactive shell for development tasks. It is built on Scala and offers seamless integration with Scala projects. Key features include incremental compilation, dependency management, and a flexible task model. Pros include native Scala support and integration with popular IDEs, while cons include slower build times for large projects.

  9. Rake: Rake is a build system for Ruby projects that uses Ruby scripts for defining build tasks. It provides a simple and flexible way to automate common development tasks. Key features include task dependencies, file operations, and a clean DSL for build scripts. Pros include familiarity for Ruby developers and easy integration with Ruby projects, while cons include limited support for non-Ruby projects and slower performance compared to other build tools.

  10. Ninja: Ninja is a small and fast build system that focuses on minimalism and speed. It is designed for quickly building large projects with a simple configuration file. Key features include efficient dependency tracking, parallel execution, and a clean build log format. Pros include fast builds and easy integration with existing build systems, while cons include lack of advanced features compared to other build tools.

Top Alternatives to Apache Ant

  • Eclipse
    Eclipse

    Standard Eclipse package suited for Java and plug-in development plus adding new plugins; already includes Git, Marketplace Client, source code and developer documentation. Click here to file a bug against Eclipse Platform. ...

  • Gradle
    Gradle

    Gradle is a build tool with a focus on build automation and support for multi-language development. If you are building, testing, publishing, and deploying software on any platform, Gradle offers a flexible model that can support the entire development lifecycle from compiling and packaging code to publishing web sites. ...

  • Apache Maven
    Apache Maven

    Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...

  • Apache Tomcat
    Apache Tomcat

    Apache Tomcat powers numerous large-scale, mission-critical web applications across a diverse range of industries and organizations. ...

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • Make
    Make

    The GNU Compiler Collection and GNU Toolchain (Binutils, GDB, GLIBC)

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

Apache Ant alternatives & related posts

Eclipse logo

Eclipse

2.6K
2.3K
392
IDE for Java EE Developers
2.6K
2.3K
+ 1
392
PROS OF ECLIPSE
  • 131
    Does it all
  • 76
    Integrates with most of tools
  • 64
    Easy to use
  • 63
    Java IDE
  • 32
    Best Java IDE
  • 9
    Open source
  • 3
    Hard for newbews
  • 2
    Great gdb integration
  • 2
    Professional
  • 2
    Good Git client allowing direct stage area edit
  • 2
    True open source with huge contribution
  • 2
    Great code suggestions
  • 2
    Extensible
  • 2
    Lightweight
  • 0
    Works with php
CONS OF ECLIPSE
  • 14
    2000 Design
  • 9
    Bad performance
  • 4
    Hard to use

related Eclipse posts

christy craemer

UPDATE: Thanks for the great response. I am going to start with VSCode based on the open source and free version that will allow me to grow into other languages, but not cost me a license ..yet.

I have been working with software development for 12 years, but I am just beginning my journey to learn to code. I am starting with Python following the suggestion of some of my coworkers. They are split between Eclipse and IntelliJ IDEA for IDEs that they use and PyCharm is new to me. Which IDE would you suggest for a beginner that will allow expansion to Java, JavaScript, and eventually AngularJS and possibly mobile applications?

See more
Dean Stringer

Have been a Visual Studio Code user since just after launch to the general public, having used the likes of Eclipse and Atom previously. Was amazed how mature it seemed off the bat and was super intrigued by the bootstrapped nature of it having been written/based on Electron/TypeScript, and of course being an open-source app from Microsoft. The features, plugin ecosystem and release frequency are very impressive. I do dev work on both Mac and Windows and don't use anything else now as far as IDEs go.

See more
Gradle logo

Gradle

17.4K
9.7K
254
A powerful build system for the JVM
17.4K
9.7K
+ 1
254
PROS OF GRADLE
  • 110
    Flexibility
  • 51
    Easy to use
  • 47
    Groovy dsl
  • 22
    Slow build time
  • 10
    Crazy memory leaks
  • 8
    Fast incremental builds
  • 5
    Kotlin DSL
  • 1
    Windows Support
CONS OF GRADLE
  • 8
    Inactionnable documentation
  • 6
    It is just the mess of Ant++
  • 4
    Hard to decide: ten or more ways to achieve one goal
  • 2
    Bad Eclipse tooling
  • 2
    Dependency on groovy

related Gradle posts

Shared insights
on
Apache MavenApache MavenGradleGradle
at

We use Apache Maven because it is a standard. Gradle is very good alternative, but Gradle doesn't provide any advantage for our project. Gradle is slower (without running daemon), need more resources and a learning curve is quite big. Our project can not use a great flexibility of Gradle. On the other hand, Maven is well-know tool integrated in many IDEs, Dockers and so on.

See more
Hajed Khlifi
Shared insights
on
DockerDockerGradleGradleJava EEJava EE

Hi, I'm working on dockerizing a heavy Java EE application where the process of installation requires a complex process maintained by a Gradle project we've developed to install, configure and customize specific jar files to generate a runnable server application at the end for the user. I'm new to Docker. As I said, the problem is that we have got a long process to install the app. The first alternative pop into my head is to put the installer Gradle project in the docker image and manage stateful data using the writable layer (in this case, I need to add Gradle too and the writable layer will be too heavy). Any advice! Thank you

See more
Apache Maven logo

Apache Maven

2.8K
1.7K
414
Apache build manager for Java projects.
2.8K
1.7K
+ 1
414
PROS OF APACHE MAVEN
  • 138
    Dependency management
  • 70
    Necessary evil
  • 60
    I’d rather code my app, not my build
  • 48
    Publishing packaged artifacts
  • 43
    Convention over configuration
  • 18
    Modularisation
  • 11
    Consistency across builds
  • 6
    Prevents overengineering using scripting
  • 4
    Runs Tests
  • 4
    Lot of cool plugins
  • 3
    Extensible
  • 2
    Hard to customize
  • 2
    Runs on Linux
  • 1
    Runs on OS X
  • 1
    Slow incremental build
  • 1
    Inconsistent buillds
  • 1
    Undeterminisc
  • 1
    Good IDE tooling
CONS OF APACHE MAVEN
  • 6
    Complex
  • 1
    Inconsistent buillds
  • 0
    Not many plugin-alternatives

related Apache Maven posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Ganesa Vijayakumar
Full Stack Coder | Technical Architect · | 19 upvotes · 5.5M views

I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

As per my work experience and knowledge, I have chosen the followings stacks to this mission.

UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

Happy Coding! Suggestions are welcome! :)

Thanks, Ganesa

See more
Apache Tomcat logo

Apache Tomcat

16.5K
12.4K
201
An open source software implementation of the Java Servlet and JavaServer Pages technologies
16.5K
12.4K
+ 1
201
PROS OF APACHE TOMCAT
  • 79
    Easy
  • 72
    Java
  • 49
    Popular
  • 1
    Spring web
CONS OF APACHE TOMCAT
  • 3
    Blocking - each http request block a thread
  • 2
    Easy to set up

related Apache Tomcat posts

Остап Комплікевич

I need some advice to choose an engine for generation web pages from the Spring Boot app. Which technology is the best solution today? 1) JSP + JSTL 2) Apache FreeMarker 3) Thymeleaf Or you can suggest even other perspective tools. I am using Spring Boot, Spring Web, Spring Data, Spring Security, PostgreSQL, Apache Tomcat in my project. I have already tried to generate pages using jsp, jstl, and it went well. However, I had huge problems via carrying already created static pages, to jsp format, because of syntax. Thanks.

See more

Java Spring JUnit

Apache HTTP Server Apache Tomcat

MySQL

See more
Jenkins logo

Jenkins

58.3K
49.8K
2.2K
An extendable open source continuous integration server
58.3K
49.8K
+ 1
2.2K
PROS OF JENKINS
  • 523
    Hosted internally
  • 469
    Free open source
  • 318
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 211
    Rich set of plugins with good documentation
  • 111
    Has support for build pipelines
  • 68
    Easy setup
  • 66
    It is open-source
  • 53
    Workflow plugin
  • 13
    Configuration as code
  • 12
    Very powerful tool
  • 11
    Many Plugins
  • 10
    Continuous Integration
  • 10
    Great flexibility
  • 9
    Git and Maven integration is better
  • 8
    100% free and open source
  • 7
    Github integration
  • 7
    Slack Integration (plugin)
  • 6
    Easy customisation
  • 6
    Self-hosted GitLab Integration (plugin)
  • 5
    Docker support
  • 5
    Pipeline API
  • 4
    Fast builds
  • 4
    Platform idnependency
  • 4
    Hosted Externally
  • 4
    Excellent docker integration
  • 3
    It`w worked
  • 3
    Customizable
  • 3
    Can be run as a Docker container
  • 3
    It's Everywhere
  • 3
    JOBDSL
  • 3
    AWS Integration
  • 2
    Easily extendable with seamless integration
  • 2
    PHP Support
  • 2
    Build PR Branch Only
  • 2
    NodeJS Support
  • 2
    Ruby/Rails Support
  • 2
    Universal controller
  • 2
    Loose Coupling
CONS OF JENKINS
  • 13
    Workarounds needed for basic requirements
  • 10
    Groovy with cumbersome syntax
  • 8
    Plugins compatibility issues
  • 7
    Lack of support
  • 7
    Limited abilities with declarative pipelines
  • 5
    No YAML syntax
  • 4
    Too tied to plugins versions

related Jenkins posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Make logo

Make

303
129
1
The GNU Compiler Collection and GNU Toolchain (Binutils, GDB, GLIBC)
303
129
+ 1
1
PROS OF MAKE
  • 1
    No-nonsense approach to builds. Just works
  • 0
    One-line Execution
CONS OF MAKE
    Be the first to leave a con

    related Make posts

    Git logo

    Git

    297.2K
    178.5K
    6.6K
    Fast, scalable, distributed revision control system
    297.2K
    178.5K
    + 1
    6.6K
    PROS OF GIT
    • 1.4K
      Distributed version control system
    • 1.1K
      Efficient branching and merging
    • 959
      Fast
    • 845
      Open source
    • 726
      Better than svn
    • 368
      Great command-line application
    • 306
      Simple
    • 291
      Free
    • 232
      Easy to use
    • 222
      Does not require server
    • 27
      Distributed
    • 22
      Small & Fast
    • 18
      Feature based workflow
    • 15
      Staging Area
    • 13
      Most wide-spread VSC
    • 11
      Role-based codelines
    • 11
      Disposable Experimentation
    • 7
      Frictionless Context Switching
    • 6
      Data Assurance
    • 5
      Efficient
    • 4
      Just awesome
    • 3
      Github integration
    • 3
      Easy branching and merging
    • 2
      Compatible
    • 2
      Flexible
    • 2
      Possible to lose history and commits
    • 1
      Rebase supported natively; reflog; access to plumbing
    • 1
      Light
    • 1
      Team Integration
    • 1
      Fast, scalable, distributed revision control system
    • 1
      Easy
    • 1
      Flexible, easy, Safe, and fast
    • 1
      CLI is great, but the GUI tools are awesome
    • 1
      It's what you do
    • 0
      Phinx
    CONS OF GIT
    • 16
      Hard to learn
    • 11
      Inconsistent command line interface
    • 9
      Easy to lose uncommitted work
    • 8
      Worst documentation ever possibly made
    • 5
      Awful merge handling
    • 3
      Unexistent preventive security flows
    • 3
      Rebase hell
    • 2
      Ironically even die-hard supporters screw up badly
    • 2
      When --force is disabled, cannot rebase
    • 1
      Doesn't scale for big data

    related Git posts

    Simon Reymann
    Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.1M views

    Our whole DevOps stack consists of the following tools:

    • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
    • Respectively Git as revision control system
    • SourceTree as Git GUI
    • Visual Studio Code as IDE
    • CircleCI for continuous integration (automatize development process)
    • Prettier / TSLint / ESLint as code linter
    • SonarQube as quality gate
    • Docker as container management (incl. Docker Compose for multi-container application management)
    • VirtualBox for operating system simulation tests
    • Kubernetes as cluster management for docker containers
    • Heroku for deploying in test environments
    • nginx as web server (preferably used as facade server in production environment)
    • SSLMate (using OpenSSL) for certificate management
    • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
    • PostgreSQL as preferred database system
    • Redis as preferred in-memory database/store (great for caching)

    The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

    • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
    • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
    • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
    • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
    • Scalability: All-in-one framework for distributed systems.
    • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
    See more
    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    GitHub logo

    GitHub

    285.5K
    249.4K
    10.3K
    Powerful collaboration, review, and code management for open source and private development projects
    285.5K
    249.4K
    + 1
    10.3K
    PROS OF GITHUB
    • 1.8K
      Open source friendly
    • 1.5K
      Easy source control
    • 1.3K
      Nice UI
    • 1.1K
      Great for team collaboration
    • 867
      Easy setup
    • 504
      Issue tracker
    • 487
      Great community
    • 483
      Remote team collaboration
    • 449
      Great way to share
    • 442
      Pull request and features planning
    • 147
      Just works
    • 132
      Integrated in many tools
    • 122
      Free Public Repos
    • 116
      Github Gists
    • 113
      Github pages
    • 83
      Easy to find repos
    • 62
      Open source
    • 60
      Easy to find projects
    • 60
      It's free
    • 56
      Network effect
    • 49
      Extensive API
    • 43
      Organizations
    • 42
      Branching
    • 34
      Developer Profiles
    • 32
      Git Powered Wikis
    • 30
      Great for collaboration
    • 24
      It's fun
    • 23
      Clean interface and good integrations
    • 22
      Community SDK involvement
    • 20
      Learn from others source code
    • 16
      Because: Git
    • 14
      It integrates directly with Azure
    • 10
      Standard in Open Source collab
    • 10
      Newsfeed
    • 8
      Fast
    • 8
      Beautiful user experience
    • 8
      It integrates directly with Hipchat
    • 7
      Easy to discover new code libraries
    • 6
      Smooth integration
    • 6
      Integrations
    • 6
      Graphs
    • 6
      Nice API
    • 6
      It's awesome
    • 6
      Cloud SCM
    • 5
      Quick Onboarding
    • 5
      Remarkable uptime
    • 5
      CI Integration
    • 5
      Reliable
    • 5
      Hands down best online Git service available
    • 4
      Version Control
    • 4
      Unlimited Public Repos at no cost
    • 4
      Simple but powerful
    • 4
      Loved by developers
    • 4
      Free HTML hosting
    • 4
      Uses GIT
    • 4
      Security options
    • 4
      Easy to use and collaborate with others
    • 3
      Easy deployment via SSH
    • 3
      Ci
    • 3
      IAM
    • 3
      Nice to use
    • 2
      Easy and efficient maintainance of the projects
    • 2
      Beautiful
    • 2
      Self Hosted
    • 2
      Issues tracker
    • 2
      Easy source control and everything is backed up
    • 2
      Never dethroned
    • 2
      All in one development service
    • 2
      Good tools support
    • 2
      Free HTML hostings
    • 2
      IAM integration
    • 2
      Very Easy to Use
    • 2
      Easy to use
    • 2
      Leads the copycats
    • 2
      Free private repos
    • 1
      Profound
    • 1
      Dasf
    CONS OF GITHUB
    • 55
      Owned by micrcosoft
    • 38
      Expensive for lone developers that want private repos
    • 15
      Relatively slow product/feature release cadence
    • 10
      API scoping could be better
    • 9
      Only 3 collaborators for private repos
    • 4
      Limited featureset for issue management
    • 3
      Does not have a graph for showing history like git lens
    • 2
      GitHub Packages does not support SNAPSHOT versions
    • 1
      No multilingual interface
    • 1
      Takes a long time to commit
    • 1
      Expensive

    related GitHub posts

    Johnny Bell

    I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

    I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

    I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

    Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

    Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

    With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

    If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

    See more

    Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

    Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

    Check Out My Architecture: CLICK ME

    Check out the GitHub repo attached

    See more