What is Papertrail and what are its top alternatives?
Papertrail is a cloud-hosted log management service that allows users to collect, search, and store log data in order to troubleshoot issues and monitor systems. Its key features include real-time log monitoring, alerting, search functionality, and the ability to easily integrate with various sources such as servers, applications, and cloud services. However, some limitations of Papertrail include limited visualization and reporting capabilities, as well as the lack of advanced analytics features.
Logentries: Logentries offers real-time log management and analysis, with features such as intuitive search, visualization tools, and anomaly detection. Pros include easy setup and flexible pricing options, while cons include limited customization options.
Loggly: Loggly is a log management service that provides powerful searching and analytics capabilities for log data. Key features include real-time monitoring, dashboards, and alerting. Pros include scalability and integrations with popular platforms, while cons include a steeper learning curve for new users.
Splunk: Splunk is a widely-used platform for analyzing and visualizing machine-generated data, including logs. It offers advanced search capabilities, extensive customization options, and powerful reporting features. Pros include robust security and compliance features, while cons include higher costs for larger data volumes.
Graylog: Graylog is an open-source log management platform that centralizes log data for analysis and troubleshooting. It offers features such as alerting, dashboards, and plugins for extended functionality. Pros include a growing community and flexibility for customization, while cons include a potentially steep learning curve for beginners.
Logz.io: Logz.io is a cloud-based log management service that offers machine learning capabilities for log analysis. Key features include centralized logging, real-time monitoring, and built-in security analytics. Pros include easy setup and automatic scaling, while cons include limited control over infrastructure.
Datadog: Datadog is a monitoring and analytics platform that includes log management as one of its features. It provides real-time visibility into log data, custom dashboards, and analysis tools. Pros include seamless integration with other monitoring tools, while cons include a higher price point for additional features.
Sumo Logic: Sumo Logic is a cloud-native log management platform that offers features such as log collection, analysis, and visualization. It also includes machine learning capabilities for anomaly detection. Pros include scalability and fast search performance, while cons include limited customization options.
Kibana: Kibana is an open-source data visualization platform that integrates with the Elasticsearch stack for log analysis. It provides features such as interactive visualizations, dashboards, and reporting tools. Pros include strong community support and flexible data visualization options, while cons include the need for technical expertise to set up and configure.
LogDNA: LogDNA is a log management tool that offers features like real-time log streaming, alerting, and collaborative capabilities for team members. Pros include a modern and user-friendly interface, while cons include limited customization options for advanced users.
Sematext Logs: Sematext Logs is a cloud-based log management tool that offers features such as log aggregation, real-time monitoring, and alerting. Pros include easy setup and integration with popular platforms, while cons include potential limitations in data retention and storage capacity.
Top Alternatives to Papertrail
- Sentry
Sentry’s Application Monitoring platform helps developers see performance issues, fix errors faster, and optimize their code health. ...
- Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...
- Logstash
Logstash is a tool for managing events and logs. You can use it to collect logs, parse them, and store them for later use (like, for searching). If you store them in Elasticsearch, you can view and analyze them with Kibana. ...
- Loggly
It is a SaaS solution to manage your log data. There is nothing to install and updates are automatically applied to your Loggly subdomain. ...
- Logentries
Logentries makes machine-generated log data easily accessible to IT operations, development, and business analysis teams of all sizes. With the broadest platform support and an open API, Logentries brings the value of log-level data to any system, to any team member, and to a community of more than 25,000 worldwide users. ...
- Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog! ...
- LogDNA
The easiest log management system you will ever use! LogDNA is a cloud-based log management system that allows engineering and devops to aggregate all system and application logs into one efficient platform. Save, store, tail and search app ...
- Sumo Logic
Cloud-based machine data analytics platform that enables companies to proactively identify availability and performance issues in their infrastructure, improve their security posture and enhance application rollouts. Companies using Sumo Logic reduce their mean-time-to-resolution by 50% and can save hundreds of thousands of dollars, annually. Customers include Netflix, Medallia, Orange, and GoGo Inflight. ...
Papertrail alternatives & related posts
Sentry
- Consolidates similar errors and makes resolution easy237
- Email Notifications121
- Open source108
- Slack integration84
- Github integration71
- Easy49
- User-friendly interface44
- The most important tool we use in production28
- Hipchat integration18
- Heroku Integration17
- Good documentation15
- Free tier14
- Self-hosted11
- Easy setup9
- Realiable7
- Provides context, and great stack trace6
- Feedback form on error pages4
- Love it baby4
- Gitlab integration3
- Filter by custom tags3
- Super user friendly3
- Captures local variables at each frame in backtraces3
- Easy Integration3
- Performance measurements1
- Confusing UI12
- Bundle size4
related Sentry posts
Sentry has been essential to our development approach. Nobody likes errors or apps that crash. We use Sentry heavily during Node.js and React development. Our developers are able to see error reports, crashes, user's browsers, and more, all in one place. Sentry also seamlessly integrates with Asana, Slack, and GitHub.
For my portfolio websites and my personal OpenSource projects I had started exclusively using React and JavaScript so I needed a way to track any errors that we're happening for my users that I didn't uncover during my personal UAT.
I had narrowed it down to two tools LogRocket and Sentry (I also tried Bugsnag but it did not make the final two). Before I get into this I want to say that both of these tools are amazing and whichever you choose will suit your needs well.
I firstly decided to go with LogRocket the fact that they had a recorded screen capture of what the user was doing when the bug happened was amazing... I could go back and rewatch what the user did to replicate that error, this was fantastic. It was also very easy to setup and get going. They had options for React and Redux.js so you can track all your Redux.js actions. I had a fairly large Redux.js store, this was ended up being a issue, it killed the processing power on my machine, Chrome ended up using 2-4gb of ram, so I quickly disabled the Redux.js option.
After using LogRocket for a month or so I decided to switch to Sentry. I noticed that Sentry was openSorce and everyone was talking about Sentry so I thought I may as well give it a test drive. Setting it up was so easy, I had everything up and running within seconds. It also gives you the option to wrap an errorBoundry in React so get more specific errors. The simplicity of Sentry was a breath of fresh air, it allowed me find the bug that was shown to the user and fix that very simply. The UI for Sentry is beautiful and just really clean to look at, and their emails are also just perfect.
I have decided to stick with Sentry for the long run, I tested pretty much all the JS error loggers and I find Sentry the best.
- API for searching logs, running reports3
- Alert system based on custom query results3
- Splunk language supports string, date manip, math, etc2
- Dashboarding on any log contents2
- Custom log parsing as well as automatic parsing2
- Query engine supports joining, aggregation, stats, etc2
- Rich GUI for searching live logs2
- Ability to style search results into reports2
- Granular scheduling and time window support1
- Query any log as key-value pairs1
- Splunk query language rich so lots to learn1
related Splunk posts
I am designing a Django application for my organization which will be used as an internal tool. The infra team said that I will not be having SSH access to the production server and I will have to log all my backend application messages to Splunk. I have no knowledge of Splunk so the following are the approaches I am considering: Approach 1: Create an hourly cron job that uploads the server log file to some Splunk storage for later analysis. - Is this possible? Approach 2: Is it possible just to stream the logs to some splunk endpoint? (If yes, I feel network usage and communication overhead will be a pain-point for my application)
Is there any better or standard approach? Thanks in advance.
I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.
- Free69
- Easy but powerful filtering18
- Scalable12
- Kibana provides machine learning based analytics to log2
- Great to meet GDPR goals1
- Well Documented1
- Memory-intensive4
- Documentation difficult to use1
related Logstash posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
Hi everyone. I'm trying to create my personal syslog monitoring.
To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.
To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.
I would like to know... Which is a cheaper and scalable solution?
Or even if there is a better way to do it.
- Centralized log management37
- Easy to setup25
- Great filtering21
- Live logging16
- Json log support15
- Log Management10
- Alerting10
- Great Dashboards7
- Love the product7
- Heroku Add-on4
- Easy to setup and use2
- Easy setup2
- No alerts in free plan2
- Great UI2
- Good parsing2
- Powerful2
- Fast search2
- Backup to S32
- Pricey after free plan3
related Loggly posts
- Log search34
- Live logs27
- Easy setup19
- Heroku Add-on14
- Backup to S35
- Easy setup, independent of existing logging setup2
- Free2
- Search/query with regex2
- E0
related Logentries posts
Regarding Continuous Integration - we've started with something very easy to set up - CircleCI , but with time we're adding more & more complex pipelines - we use Jenkins to configure & run those. It's much more effort, but at some point we had to pay for the flexibility we expected. Our source code version control is Git (which probably doesn't require a rationale these days) and we keep repos in GitHub - since the very beginning & we never considered moving out. Our primary monitoring these days is in New Relic (Ruby & SPA apps) and AppSignal (Elixir apps) - we're considering unifying it in New Relic , but this will require some improvements in Elixir app observability. For error reporting we use Sentry (a very popular choice in this class) & we collect our distributed logs using Logentries (to avoid semi-manual handling here).
Logentries, LogDNA, Timber.io, Papertrail and Sumo Logic provide free pricing plan for #Heroku application. You can add these applications as add-ons very easily.
Datadog
- Monitoring for many apps (databases, web servers, etc)139
- Easy setup107
- Powerful ui87
- Powerful integrations84
- Great value70
- Great visualization54
- Events + metrics = clarity46
- Notifications41
- Custom metrics41
- Flexibility39
- Free & paid plans19
- Great customer support16
- Makes my life easier15
- Adapts automatically as i scale up10
- Easy setup and plugins9
- Super easy and powerful8
- In-context collaboration7
- AWS support7
- Rich in features6
- Docker support5
- Cute logo4
- Source control and bug tracking4
- Monitor almost everything4
- Cost4
- Full visibility of applications4
- Simple, powerful, great for infra4
- Easy to Analyze4
- Best than others4
- Automation tools4
- Best in the field3
- Free setup3
- Good for Startups3
- Expensive3
- APM2
- Expensive19
- No errors exception tracking4
- External Network Goes Down You Wont Be Logging2
- Complicated1
related Datadog posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
- Easy setup6
- Cheap4
- Extremely fast3
- Powerful filtering and alerting functionality2
- Graphing capabilities1
- Export data to S31
- Multi-cloud1
- Limited visualization capabilities1
- Cannot copy & paste text from visualization1
related LogDNA posts
Logentries, LogDNA, Timber.io, Papertrail and Sumo Logic provide free pricing plan for #Heroku application. You can add these applications as add-ons very easily.
- Search capabilities11
- Live event streaming5
- Pci 3.0 compliant3
- Easy to setup2
- Expensive2
- Occasionally unreliable log ingestion1
- Missing Monitoring1
related Sumo Logic posts
Logentries, LogDNA, Timber.io, Papertrail and Sumo Logic provide free pricing plan for #Heroku application. You can add these applications as add-ons very easily.