Alternatives to CloudBees logo

Alternatives to CloudBees

Jenkins, CircleCI, Bamboo, Heroku, and Google App Engine are the most popular alternatives and competitors to CloudBees.
27
41
+ 1
3

What is CloudBees and what are its top alternatives?

Enables organizations to build, test and deploy applications to production, utilizing continuous delivery practices. They are focused solely on Jenkins as a tool for continuous delivery both on-premises and in the cloud.
CloudBees is a tool in the Platform as a Service category of a tech stack.

CloudBees alternatives & related posts

related Jenkins posts

Thierry Schellenbach
Thierry Schellenbach
CEO at Stream · | 23 upvotes · 78K views
atStreamStream
Go
Go
Travis CI
Travis CI
GitHub
GitHub
Jenkins
Jenkins
#ContinuousIntegration
#CodeCollaborationVersionControl

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Tymoteusz Paul
Tymoteusz Paul
Devops guy at X20X Development LTD · | 17 upvotes · 585.1K views
Vagrant
Vagrant
VirtualBox
VirtualBox
Ansible
Ansible
Elasticsearch
Elasticsearch
Kibana
Kibana
Logstash
Logstash
TeamCity
TeamCity
Jenkins
Jenkins
Slack
Slack
Apache Maven
Apache Maven
Vault
Vault
Git
Git
Docker
Docker
CircleCI
CircleCI
LXC
LXC
Amazon EC2
Amazon EC2

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more

related CircleCI posts

Tymoteusz Paul
Tymoteusz Paul
Devops guy at X20X Development LTD · | 17 upvotes · 585.1K views
Vagrant
Vagrant
VirtualBox
VirtualBox
Ansible
Ansible
Elasticsearch
Elasticsearch
Kibana
Kibana
Logstash
Logstash
TeamCity
TeamCity
Jenkins
Jenkins
Slack
Slack
Apache Maven
Apache Maven
Vault
Vault
Git
Git
Docker
Docker
CircleCI
CircleCI
LXC
LXC
Amazon EC2
Amazon EC2

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Tim Abbott
Tim Abbott
Founder at Zulip · | 13 upvotes · 60.9K views
atZulipZulip
Travis CI
Travis CI
CircleCI
CircleCI

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
Bamboo logo

Bamboo

284
190
11
284
190
+ 1
11
Tie automated builds, tests, and releases together in a single workflow
Bamboo logo
Bamboo
VS
CloudBees logo
CloudBees
Heroku logo

Heroku

8.7K
6.3K
3.1K
8.7K
6.3K
+ 1
3.1K
Build, deliver, monitor and scale web apps and APIs with a trail blazing developer experience.
Heroku logo
Heroku
VS
CloudBees logo
CloudBees

related Heroku posts

Russel Werner
Russel Werner
Lead Engineer at StackShare · | 21 upvotes · 332.7K views
atStackShareStackShare
React
React
Glamorous
Glamorous
Apollo
Apollo
Node.js
Node.js
Rails
Rails
Heroku
Heroku
GitHub
GitHub
Amazon S3
Amazon S3
Amazon CloudFront
Amazon CloudFront
Webpack
Webpack
CircleCI
CircleCI
Redis
Redis
#StackDecisionsLaunch
#SSR
#Microservices
#FrontEndRepoSplit

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Tim Nolet
Tim Nolet
Founder, Engineer & Dishwasher at Checkly · | 20 upvotes · 382.7K views
atChecklyHQChecklyHQ
Heroku
Heroku
Docker
Docker
GitHub
GitHub
Node.js
Node.js
hapi
hapi
Vue.js
Vue.js
AWS Lambda
AWS Lambda
Amazon S3
Amazon S3
PostgreSQL
PostgreSQL
Knex.js
Knex.js
vuex
vuex

Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.

We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.

Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.

Enough biz talk, onto tech. The challenges were:

  • Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
  • Update API and back end services to handle and enforce plan limits.
  • Update the UI to kindly state plan limits are in effect on some part of the UI.
  • Update the pricing page to reflect all changes.
  • Keep the actual processing backend, storage and API's as untouched as possible.

In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.

  1. We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
  2. The Vue.js frontend reads these from the vuex store on login.
  3. Based on these values, the UI has simple v-if statements to either just show the feature or show a friendly "please upgrade" button.
  4. The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.

Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.

What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.

Hope this helps anyone building out their SaaS and is in a similar situation.

See more

related Google App Engine posts

Nick Rockwell
Nick Rockwell
CTO at NY Times · | 11 upvotes · 63.7K views
atThe New York TimesThe New York Times
Amazon EC2
Amazon EC2
Google App Engine
Google App Engine
Google Kubernetes Engine
Google Kubernetes Engine
Kubernetes
Kubernetes
#AWS
#GCP
#AWStoGCPmigration
#Cloudmigration
#Migration

So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.

So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.

#AWStoGCPmigration #cloudmigration #migration

See more

related AWS Elastic Beanstalk posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 847.6K views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Heroku
Heroku
Ruby
Ruby
Rails
Rails
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
MariaDB
MariaDB
Microsoft SQL Server
Microsoft SQL Server
Amazon RDS
Amazon RDS
AWS Lambda
AWS Lambda
Python
Python
Redis
Redis
Memcached
Memcached
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Amazon ElastiCache
Amazon ElastiCache

We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

See more
Apollo logo

Apollo

929
673
9
929
673
+ 1
9
GraphQL server for Express, Connect, Hapi, Koa and more
Apollo logo
Apollo
VS
CloudBees logo
CloudBees

related Apollo posts

Nick Rockwell
Nick Rockwell
CTO at NY Times · | 28 upvotes · 524.6K views
atThe New York TimesThe New York Times
MySQL
MySQL
PHP
PHP
React
React
Apollo
Apollo
GraphQL
GraphQL
Node.js
Node.js
Kafka
Kafka
Apache HTTP Server
Apache HTTP Server

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Adam Neary
Adam Neary
Engineer at Airbnb · | 26 upvotes · 415.2K views
atAirbnbAirbnb
GraphQL
GraphQL
GraphQL Playground
GraphQL Playground
Apollo
Apollo
#BackendDrivenUI
#Prisma

At Airbnb we use GraphQL Unions for a "Backend-Driven UI." We have built a system where a very dynamic page is constructed based on a query that will return an array of some set of possible “sections.” These sections are responsive and define the UI completely.

The central file that manages this would be a generated file. Since the list of possible sections is quite large (~50 sections today for Search), it also presumes we have a sane mechanism for lazy-loading components with server rendering, which is a topic for another post. Suffice it to say, we do not need to package all possible sections in a massive bundle to account for everything up front.

Each section component defines its own query fragment, colocated with the section’s component code. This is the general idea of Backend-Driven UI at Airbnb. It’s used in a number of places, including Search, Trip Planner, Host tools, and various landing pages. We use this as our starting point, and then in the demo show how to (1) make and update to an existing section, and (2) add a new section.

While building your product, you want to be able to explore your schema, discovering field names and testing out potential queries on live development data. We achieve that today with GraphQL Playground, the work of our friends at #Prisma. The tools come standard with Apollo Server.

#BackendDrivenUI

See more
OpenShift logo

OpenShift

574
530
467
574
530
+ 1
467
Red Hat's free Platform as a Service (PaaS) for hosting Java, PHP, Ruby, Python, Node.js, and Perl apps.