What is Skaffold and what are its top alternatives?
Top Alternatives to Skaffold
- Helm
Helm is the best way to find, share, and use software built for Kubernetes.
- Argo
Argo is an open source container-native workflow engine for getting work done on Kubernetes. Argo is implemented as a Kubernetes CRD (Custom Resource Definition). ...
- Docker Compose
With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...
- Jib
Jib builds Docker and OCI images for your Java applications and is available as plugins for Maven and Gradle. ...
- Spinnaker
Created at Netflix, it has been battle-tested in production by hundreds of teams over millions of deployments. It combines a powerful and flexible pipeline management system with integrations to the major cloud providers. ...
- Jenkins
In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...
- kaniko
A tool to build container images from a Dockerfile, inside a container or Kubernetes cluster. kaniko doesn't depend on a Docker daemon and executes each command within a Dockerfile completely in userspace. This enables building container images in environments that can't easily or securely run a Docker daemon, such as a standard Kubernetes cluster. ...
- Git
Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...
Skaffold alternatives & related posts
- Infrastructure as code8
- Open source6
- Easy setup2
- Support1
- Testability and reproducibility1
related Helm posts
We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).
We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .
Read the blog post to go more in depth.
We began our hosting journey, as many do, on Heroku because they make it easy to deploy your application and automate some of the routine tasks associated with deployments, etc. However, as our team grew and our product matured, our needs have outgrown Heroku. I will dive into the history and reasons for this in a future blog post.
We decided to migrate our infrastructure to Kubernetes running on Amazon EKS. Although Google Kubernetes Engine has a slightly more mature Kubernetes offering and is more user-friendly; we decided to go with EKS because we already using other AWS services (including a previous migration from Heroku Postgres to AWS RDS). We are still in the process of moving our main website workloads to EKS, however we have successfully migrate all our staging and testing PR apps to run in a staging cluster. We developed a Slack chatops application (also running in the cluster) which automates all the common tasks of spinning up and managing a production-like cluster for a pull request. This allows our engineering team to iterate quickly and safely test code in a full production environment. Helm plays a central role when deploying our staging apps into the cluster. We use CircleCI to build docker containers for each PR push, which are then published to Amazon EC2 Container Service (ECR). An upgrade-operator
process watches the ECR repository for new containers and then uses Helm to rollout updates to the staging environments. All this happens automatically and makes it really easy for developers to get code onto servers quickly. The immutable and isolated nature of our staging environments means that we can do anything we want in that environment and quickly re-create or restore the environment to start over.
The next step in our journey is to migrate our production workloads to an EKS cluster and build out the CD workflows to get our containers promoted to that cluster after our QA testing is complete in our staging environments.
- Open Source3
- Autosinchronize the changes to deploy2
- Online service, no need to install anything1
related Argo posts
- Multi-container descriptor123
- Fast development environment setup110
- Easy linking of containers79
- Simple yaml configuration68
- Easy setup60
- Yml or yaml format16
- Use Standard Docker API12
- Open source8
- Go from template to application in minutes5
- Can choose Discovery Backend5
- Scalable4
- Easy configuration4
- Kubernetes integration4
- Quick and easy3
- Tied to single machine9
- Still very volatile, changing syntax often5
related Docker Compose posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.
We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.
- No docker files to maintain2
- Build is faster than Docker0
- Native0
- Coder friendly with Maven and Gradle plugins0
related Jib posts
Spinnaker
- Mature14
- No GitOps3
- Configuration time1
- Management overhead1
- Ease of use1
related Spinnaker posts
LaunchDarkly is almost a five year old company, and our methodology for deploying was state of the art... for 2014. We recently undertook a project to modernize the way we #deploy our software, moving from Ansible-based deploy scripts that executed on our local machines, to using Spinnaker (along with Terraform and Packer) as the basis of our deployment system. We've been using Armory's enterprise Spinnaker offering to make this project a reality.
- Hosted internally523
- Free open source469
- Great to build, deploy or launch anything async318
- Tons of integrations243
- Rich set of plugins with good documentation211
- Has support for build pipelines111
- Easy setup68
- It is open-source66
- Workflow plugin53
- Configuration as code13
- Very powerful tool12
- Many Plugins11
- Continuous Integration10
- Great flexibility10
- Git and Maven integration is better9
- 100% free and open source8
- Github integration7
- Slack Integration (plugin)7
- Easy customisation6
- Self-hosted GitLab Integration (plugin)6
- Docker support5
- Pipeline API5
- Fast builds4
- Platform idnependency4
- Hosted Externally4
- Excellent docker integration4
- It`w worked3
- Customizable3
- Can be run as a Docker container3
- It's Everywhere3
- JOBDSL3
- AWS Integration3
- Easily extendable with seamless integration2
- PHP Support2
- Build PR Branch Only2
- NodeJS Support2
- Ruby/Rails Support2
- Universal controller2
- Loose Coupling2
- Workarounds needed for basic requirements13
- Groovy with cumbersome syntax10
- Plugins compatibility issues8
- Lack of support7
- Limited abilities with declarative pipelines7
- No YAML syntax5
- Too tied to plugins versions4
related Jenkins posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.
Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.
Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.
#ContinuousIntegration #CodeCollaborationVersionControl
- No need for docker demon3
- Automation using jules1
- Slow compared to docker1
related kaniko posts
- Distributed version control system1.4K
- Efficient branching and merging1.1K
- Fast959
- Open source845
- Better than svn726
- Great command-line application368
- Simple306
- Free291
- Easy to use232
- Does not require server222
- Distributed27
- Small & Fast22
- Feature based workflow18
- Staging Area15
- Most wide-spread VSC13
- Role-based codelines11
- Disposable Experimentation11
- Frictionless Context Switching7
- Data Assurance6
- Efficient5
- Just awesome4
- Github integration3
- Easy branching and merging3
- Compatible2
- Flexible2
- Possible to lose history and commits2
- Rebase supported natively; reflog; access to plumbing1
- Light1
- Team Integration1
- Fast, scalable, distributed revision control system1
- Easy1
- Flexible, easy, Safe, and fast1
- CLI is great, but the GUI tools are awesome1
- It's what you do1
- Phinx0
- Hard to learn16
- Inconsistent command line interface11
- Easy to lose uncommitted work9
- Worst documentation ever possibly made8
- Awful merge handling5
- Unexistent preventive security flows3
- Rebase hell3
- Ironically even die-hard supporters screw up badly2
- When --force is disabled, cannot rebase2
- Doesn't scale for big data1
related Git posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.